Arabidopsis (Arabidopsis thaliana) PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) post-translationally modifies RNA-binding proteins by arginine (R) methylation. However, the impact of this modification on the regulation of RNA processing is largely unknown. We used the spliceosome component, SM-LIKE PROTEIN 4 (LSM4), as a paradigm to study the role of R-methylation in RNA processing.
View Article and Find Full Text PDFC-REPEAT BINDING FACTORS (CBFs) are highly conserved plant transcription factors that promote cold tolerance. In Arabidopsis (Arabidopsis thaliana), three CBFs (CBF1 to CBF3) play a critical role in cold acclimation, and the expression of their corresponding genes is rapidly and transiently induced during this adaptive response. Cold induction of CBFs has been extensively studied and shown to be tightly controlled, yet the molecular mechanisms that restrict the expression of each CBF after their induction during cold acclimation are poorly understood.
View Article and Find Full Text PDFThe coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants.
View Article and Find Full Text PDFPlants react to environmental challenges by integrating external cues with endogenous signals to optimize survival and reproductive success. However, the mechanisms underlying this integration remain obscure. While stress conditions are known to impact plant development, how developmental transitions influence responses to adverse conditions has not been addressed.
View Article and Find Full Text PDFThe prefoldin complex (PFDc) was identified in humans as a co-chaperone of the cytosolic chaperonin T-COMPLEX PROTEIN RING COMPLEX (TRiC)/CHAPERONIN CONTAINING TCP-1 (CCT). PFDc is conserved in eukaryotes and is composed of subunits PFD1-6, and PFDc-TRiC/CCT folds actin and tubulins. PFDs also participate in a wide range of cellular processes, both in the cytoplasm and in the nucleus, and their malfunction causes developmental alterations and disease in animals and altered growth and environmental responses in yeast and plants.
View Article and Find Full Text PDFTrimethylamine -oxide (TMAO) is a well-known naturally occurring osmolyte in animals that counteracts the effect of different denaturants related to environmental stress and has recently been associated with severe human chronic diseases. In plants, however, the presence of TMAO has not yet been reported. In this study, we demonstrate that plants contain endogenous levels of TMAO, that it is synthesized by flavin-containing monooxygenases, and that its levels increase in response to abiotic stress conditions.
View Article and Find Full Text PDFThe interplay between the phytohormone abscisic acid (ABA) and the gasotransmitter nitric oxide (NO) regulates seed germination and post-germinative seedling growth. We show that GAP1 (germination in ABA and cPTIO 1) encodes the transcription factor ANAC089 with a critical membrane-bound domain and extranuclear localization. ANAC089 mutants lacking the membrane-tethered domain display insensitivity to ABA, salt, and osmotic and cold stresses, revealing a repressor function.
View Article and Find Full Text PDFEndoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity.
View Article and Find Full Text PDFLow temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis thaliana, have evolved sophisticated adaptive mechanisms to tolerate freezing temperatures. Central to this adaptation is the process of cold acclimation.
View Article and Find Full Text PDFAlthough originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana.
View Article and Find Full Text PDFIt has long been assumed that the wide reprogramming of gene expression that modulates plant response to unfavorable environmental conditions is mainly controlled at the transcriptional level. A growing body of evidence, however, indicates that posttranscriptional regulatory mechanisms also play a relevant role in this control. Thus, the LSMs, a family of proteins involved in mRNA metabolism highly conserved in eukaryotes, have emerged as prominent regulators of plant tolerance to abiotic stress.
View Article and Find Full Text PDFPlant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient.
View Article and Find Full Text PDFThe control of precursor-messenger RNA (pre-mRNA) splicing is emerging as an important layer of regulation in plant responses to endogenous and external cues. In eukaryotes, pre-mRNA splicing is governed by the activity of a large ribonucleoprotein machinery, the spliceosome, whose protein core is composed of the Sm ring and the related Sm-like 2-8 complex. Recently, the Arabidopsis () Sm-like 2-8 complex has been characterized.
View Article and Find Full Text PDFUnder low nonfreezing temperature conditions, plants from temperate climates undergo physiological and biochemical adjustments that increase their tolerance to freezing temperatures. This response, termed cold acclimation, is largely regulated by changes in gene expression. Molecular and genetic studies have identified a small family of transcription factors, called C-repeat binding factors (CBFs), as key regulators of the transcriptomic rearrangement that leads to cold acclimation.
View Article and Find Full Text PDFNON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) is a master regulator of plant response to pathogens that confers immunity through a transcriptional cascade mediated by salicylic acid and TGA transcription factors. Little is known, however, about its implication in plant response to abiotic stress. Here, we provide genetic and molecular evidence supporting the fact that Arabidopsis NPR1 plays an essential role in cold acclimation by regulating cold-induced gene expression independently of salicylic acid and TGA factors.
View Article and Find Full Text PDFPlant tolerance to freezing temperatures is governed by endogenous constitutive components and environmental inducing factors. Nitric oxide (NO) is one of the endogenous components that participate in freezing tolerance regulation. A combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1-2 mutant plants suggests that NO acts attenuating the production and accumulation of osmoprotective and regulatory metabolites, such as sugars and polyamines, stress-related hormones, such as ABA and jasmonates, and antioxidants, such as anthocyanins and flavonoids.
View Article and Find Full Text PDFCharacterization of a new tomato () T-DNA mutant allowed for the isolation of the () gene whose lack of function was responsible for the severe alterations observed in the shoot apex and reproductive organs under salinity conditions. Physiological studies proved that gene is required to maintain a proper low Na/Ca ratio in growing tissues allowing tomato growth under salt stress. Expression analysis of the main responsible genes for Na compartmentalization (i.
View Article and Find Full Text PDFSpliceosome activity is tightly regulated to ensure adequate splicing in response to internal and external cues. It has been suggested that core components of the spliceosome, such as the snRNPs, would participate in the control of its activity. The experimental indications supporting this proposition, however, remain scarce, and the operating mechanisms poorly understood.
View Article and Find Full Text PDFThe process of cold acclimation is an important adaptive response whereby many plants from temperate regions increase their freezing tolerance after being exposed to low non-freezing temperatures. The correct development of this response relies on proper accumulation of a number of transcription factors that regulate expression patterns of cold-responsive genes. Multiple studies have revealed a variety of molecular mechanisms involved in promoting the accumulation of these transcription factors.
View Article and Find Full Text PDFLow temperature is a major environmental stress that seriously compromises plant development, distribution and productivity. Most crops are from tropical origin and, consequently, chilling sensitive. Interestingly, however, some tropical plants, are able to augment their chilling tolerance when previously exposed to suboptimal growth temperatures.
View Article and Find Full Text PDFIn eukaryotes, the decapping machinery is highly conserved and plays an essential role in controlling mRNA stability, a key step in the regulation of gene expression. Yet, the role of mRNA decapping in shaping gene expression profiles in response to environmental cues and the operating molecular mechanisms are poorly understood. Here, we provide genetic and molecular evidence that a component of the decapping machinery, the LSM1-7 complex, plays a critical role in plant tolerance to abiotic stresses.
View Article and Find Full Text PDFPlant Signal Behav
December 2015
Low temperature is one of the most important environmental stresses constraining plant development and distribution. Plants have evolved complex adaptive mechanisms to face and survive freezing temperatures. Different signaling pathways regulating plant response to cold have been described, and some of them are mediated by hormones.
View Article and Find Full Text PDF