Publications by authors named "Julio Rodriguez-Romero"

Article Synopsis
  • The development of viral infectious full-length clones has greatly enhanced our understanding of key aspects of the viral life cycle, including genome replication and transmission.
  • This text outlines the specific protocols for creating an infectious clone of Botrytis virus F (BVF), which targets the plant pathogenic fungus Botrytis cinerea.
  • It also includes steps for determining the full sequence of the cloned virus, preparing fungal protoplasts, and transfecting these protoplasts with transcripts from the BVF clone.
View Article and Find Full Text PDF
Article Synopsis
  • Next-generation sequencing (NGS) of total RNA has enhanced our understanding of viruses affecting various hosts, including fungi, by revealing new viruses and their evolutionary patterns.
  • The text outlines specific procedures for isolating the plant pathogenic fungus Botrytis cinerea from grapevine plants with gray mold, as well as methods for culturing and maintaining this fungus.
  • It details the process of RNA extraction for NGS, a bioinformatics pipeline for identifying mycoviruses in the samples, and techniques for validating the detected mycoviruses.
View Article and Find Full Text PDF

Botrytis virus F (BVF) is a positive-sense, single-stranded RNA (+ssRNA) virus within the family of the plant-pathogenic fungus . In this study, the complete sequence of a BVF strain isolated from collected from grapevine fields in Spain was analyzed. This virus, in this work BVF-V448, has a genome of 6827 nt in length, excluding the poly(A) tail, with two open reading frames encoding an RNA dependent RNA polymerase (RdRP) and a coat protein (CP).

View Article and Find Full Text PDF

is one of the most important plant-pathogenic fungus. Products based on microorganisms can be used in biocontrol strategies alternative to chemical control, and mycoviruses have been explored as putative biological agents in such approaches. Here, we have explored the mycovirome of isolates from grapevine of Italy and Spain to increase the knowledge about mycoviral diversity and evolution, and to search for new widely distributed mycoviruses that could be active ingredients in biological products to control this hazardous fungus.

View Article and Find Full Text PDF

Polyadenylation plays an important role in gene regulation, thus affecting a wide variety of biological processes. In the rice blast fungus Magnaporthe oryzae the cleavage factor I protein Rpb35 is required for pre-mRNA polyadenylation and fungal virulence. Here we present the bioinformatic approach and output data related to a global survey of polyadenylation site usage in M.

View Article and Find Full Text PDF

Generation of mRNA isoforms by alternative polyadenylation (APA) and their involvement in regulation of fungal cellular processes, including virulence, remains elusive. Here, we investigated genome-wide polyadenylation site (PAS) selection in the rice blast fungus to understand how APA regulates pathogenicity. More than half of Magnaporthe oryzae transcripts undergo APA and show novel motifs in their PAS region.

View Article and Find Full Text PDF

Among their responses to microbial infection, plants deploy an arsenal of natural antibiotic products. Historically these have been identified on the basis of their antibiotic activity in vitro, which leaves open the question of their relevance to defense in planta. The vast majority of such natural products from the important crop plant rice () are diterpenoids whose biosynthesis proceeds via either - or -copalyl diphosphate (CPP) intermediates, which were isolated on the basis of their antibiotic activity against the fungal blast pathogen However, rice plants in which the gene for the -CPP synthase is knocked out do not exhibit increased susceptibility to Here, we show that knocking out or knocking down actually decreases susceptibility to the bacterial leaf blight pathogen By contrast, genetic manipulation of the gene for the -CPP synthase alters susceptibility to both and Despite the secretion of diterpenoids dependent on or from roots, neither knockout exhibited significant changes in the composition of their rhizosphere bacterial communities.

View Article and Find Full Text PDF

The establishment of polarity is a critical process in pathogenic fungi, mediating infection-related morphogenesis and host tissue invasion. Here, we report the identification of TPC1 (Transcription factor for Polarity Control 1), which regulates invasive polarized growth in the rice blast fungus Magnaporthe oryzae. TPC1 encodes a putative transcription factor of the fungal Zn(II)2Cys6 family, exclusive to filamentous fungi.

View Article and Find Full Text PDF

In this study we characterize a novel positive and single stranded RNA (ssRNA) mycovirus isolated from the rice field isolate of Magnaporthe oryzae Guy11. The ssRNA contains a single open reading frame (ORF) of 2,373 nucleotides in length and encodes an RNA-dependent RNA polymerase (RdRp) closely related to ourmiaviruses (plant viruses) and ourmia-like mycoviruses. Accordingly, we name this virus Magnaporthe oryzae ourmia-like virus 1 (MOLV1).

View Article and Find Full Text PDF

Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2].

View Article and Find Full Text PDF

The ability for light sensing is found from bacteria to humans but relies only on a small number of evolutionarily conserved photoreceptors. A large number of fungi react to light, mostly to blue light. Aspergillus nidulans also responds to red light using a phytochrome light sensor, FphA, for the control of hundreds of light-regulated genes.

View Article and Find Full Text PDF

Morphogenesis encompasses programmed changes in gene expression that lead to the development of specialized cell types. In the model fungus Aspergillus nidulans, asexual development involves the formation of characteristic cell types, collectively known as the conidiophore. With the aim of determining the transcriptional changes that occur upon induction of asexual development, we have applied massive mRNA sequencing to compare the expression pattern of 19-h-old submerged vegetative cells (hyphae) with that of similar hyphae after exposure to the air for 5 h.

View Article and Find Full Text PDF

The ascomycete fungus Neurospora is present in many parts of the world, in particular in tropical and subtropical areas, where it is found growing on recently burned vegetation. We have sampled the Neurospora population across Spain. The sampling sites were located in the region of Galicia (northwestern corner of the Iberian peninsula), the province of Cáceres, the city of Seville, and the two major islands of the Canary Islands archipelago (Tenerife and Gran Canaria, west coast of Africa).

View Article and Find Full Text PDF

Light regulates several aspects of the biology of many organisms, including the balance between asexual and sexual development in some fungi. To understand how light regulates fungal development at the molecular level we have used Aspergillus nidulans as a model. We have performed a genome-wide expression analysis that has allowed us to identify >400 genes upregulated and >100 genes downregulated by light in developmentally competent mycelium.

View Article and Find Full Text PDF

Aspergilli are ubiquitous soil-borne fungi growing within or on the surface of numerous organic substrates. Growth within a substrate or growth on the surface correlates to different growth conditions for the hyphae due to significant changes in oxygen or reactive oxygen species levels and variations in humidity or temperature. The production of air-borne spores is supported by the substrate-air interphase and also requires a sensing system to adapt appropriately.

View Article and Find Full Text PDF

Light is one of the most important environmental factors for orientation of almost all organisms on Earth. Whereas light sensing is of crucial importance in plants to optimize light-dependent energy conservation, in nonphotosynthetic organisms, the synchronization of biological clocks to the length of a day is an important function. Filamentous fungi may use the light signal as an indicator for the exposure of hyphae to air and adapt their physiology to this situation or induce morphogenetic pathways.

View Article and Find Full Text PDF

Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution.

View Article and Find Full Text PDF

The fungus Phycomyces blakesleeanus reacts to environmental signals, including light, gravity, touch, and the presence of nearby objects, by changing the speed and direction of growth of its fruiting body (sporangiophore). Phototropism, growth toward light, shares many features in fungi and plants but the molecular mechanisms remain to be fully elucidated. Phycomyces mutants with altered phototropism were isolated approximately 40 years ago and found to have mutations in the mad genes.

View Article and Find Full Text PDF

The gene hspA for the heat-shock protein HSP100 is induced by blue light and heat shock in the zygomycete fungus Phycomyces blakesleeanus. We have investigated the molecular details of the regulation of hspA gene transcription. We have cloned 1.

View Article and Find Full Text PDF

Phycomyces blakesleeanus is a filamentous zygomycete fungus that produces striking elongated single cells that extend up to 10 cm into the air, with each such sporangiophore supporting a sphere containing the spores for dispersal. This organism has served as a model for the detection of environmental signals as diverse as light, chemicals, touch, wind, gravity, and adjacent objects. In particular, sporangiophore growth is regulated by light, and it exhibits phototropism by bending toward near-UV and blue wavelengths and away from far-UV wavelengths in a manner that is physiologically similar to plant phototropic responses.

View Article and Find Full Text PDF

We cloned and sequenced the Phycomyces hspA gene. The hspA gene product is a 901-amino-acid protein member of the clpB/HSP100 family. HSP100 proteins are ATPases involved in high-temperature tolerance, proteolysis, and protein disaggregation.

View Article and Find Full Text PDF