Publications by authors named "Julio Menendez"

, a prevalent weed in Czech winter wheat fields, has developed resistance to ALS-inhibiting herbicides due to their frequent use. This study reports a biotype of resistant to pyroxsulam, with cross and multiple resistance to iodosulfuron, propoxycarbazone, pinoxaden, and chlortoluron. Dose-response experiments revealed high resistance of both R1 and R2 biotypes to pyroxsulam, with resistance factors (RF) of 6.

View Article and Find Full Text PDF

Resistance to acetolactate synthase (ALS) inhibiting herbicides has recently been reported in from wheat fields in northern Tunisia, where the weed is widespread. However, potential resistance mechanisms conferring resistance in these populations are unknown. The aim of this research was to study target-site resistance (TSR) and non-target-site resistance (NTSR) mechanisms present in two putative resistant (R) populations.

View Article and Find Full Text PDF

Papaver rhoeas biotypes displaying multiple herbicide resistance to ALS inhibitors and synthetic auxin herbicides (SAH) are spreading across Europe. In Spain, enhanced metabolism to imazamox was confirmed in one population, while cytochrome-P450 (P450) based metabolism to 2,4-D in another two. The objectives of this research were to further confirm the presence of P450 mediated enhanced metabolism and, if so, to confirm whether a putative common P450 is responsible of metabolizing both 2,4-D and imazamox.

View Article and Find Full Text PDF

Six Johnsongrass populations suspected of being glyphosate resistant were collected from railways and freeways near Cordoba (SW Spain), where glyphosate is the main weed control tool. The 50% reduction in shoot fresh weight (GR) values obtained for these six populations ranged from 550.4 to 1169 g ae ha, which were 4.

View Article and Find Full Text PDF

Target-site and non-target-site resistance mechanisms to ALS inhibitors were investigated in multiple resistant (tribenuron-methyl and 2,4-D) and only 2,4-D resistant, Spanish corn poppy populations. Six amino-acid replacements at the Pro197 position (Ala197, Arg197, His197, Leu197, Thr197 and Ser197) were found in three multiple resistant populations. These replacements were responsible for the high tribenuron-methyl resistance response, and some of them, especially Thr197 and Ser197, elucidated the cross-resistant pattern for imazamox and florasulam, respectively.

View Article and Find Full Text PDF

In southern Europe, the intensive use of 2,4-D (2,4-dichlorophenoxyacetic acid) and tribenuron-methyl in cereal crop systems has resulted in the evolution of resistant (R) corn poppy (Papaver rhoeas L.) biotypes. Experiments were conducted to elucidate (1) the resistance response to these two herbicides, (2) the cross-resistant pattern to other synthetic auxins and (3) the physiological basis of the auxin resistance in two R (F-R213 and D-R703) populations.

View Article and Find Full Text PDF