Publications by authors named "Julio M Rubio"

Innate immune cells such as monocytes and macrophages contain high levels of arachidonic acid (AA), part of which can be mobilized during cellular activation for the formation of a vast array of bioactive oxygenated metabolites. Monocytes and macrophages present in inflammatory foci typically incorporate large amounts of AA, not only in membrane phospholipids, but also in neutral lipids such as triacylglycerol. Thus, it was of interest to investigate the metabolic fate of these two AA pools in macrophages.

View Article and Find Full Text PDF

Macrophages are professional antigen presenting cells with intense phagocytic activity, strategically distributed in tissues and cavities. These cells are capable of responding to a wide variety of innate inflammatory stimuli, many of which are signaled by lipid mediators. The distribution of arachidonic acid (AA) among glycerophospholipids and its subsequent release and conversion into eicosanoids in response to inflammatory stimuli such as zymosan, constitutes one of the most studied models.

View Article and Find Full Text PDF

Adrenic acid (AA), the 2-carbon elongation product of arachidonic acid, is present at significant levels in membrane phospholipids of mouse peritoneal macrophages. Despite its abundance and structural similarity to arachidonic acid, very little is known about the molecular mechanisms governing adrenic acid mobilization in cells of the innate immune system. This contrasts with the wide availability of data on arachidonic acid mobilization.

View Article and Find Full Text PDF

Availability of free arachidonic acid (AA) constitutes a rate limiting factor for cellular eicosanoid synthesis. AA distributes differentially across membrane phospholipids, which is largely due to the action of coenzyme A-independent transacylase (CoA-IT), an enzyme that moves the fatty acid primarily from diacyl phospholipid species to ether-containing species, particularly the ethanolamine plasmalogens. In this work, we examined the dependence of AA remodeling on plasmalogen content using the murine macrophage cell line RAW264.

View Article and Find Full Text PDF

Hydroxy fatty acids are known to cause cell cycle arrest and apoptosis. The best studied of them, 9-hydroxystearic acid (9-HSA), induces apoptosis in cell lines by acting through mechanisms involving different targets. Using mass spectrometry-based lipidomic approaches, we show in this study that 9-HSA levels in human colorectal tumors are diminished when compared with normal adjacent tissue.

View Article and Find Full Text PDF

Macrophages, as professional phagocytes of the immune system, possess the ability to detect and clear invading pathogens and apoptotic cells through phagocytosis. Phagocytosis involves membrane reorganization and remodeling events on the cell surface, which play an essential role in innate immunity and tissue homeostasis and the control of inflammation. In this work, we report that cells deficient in membrane ethanolamine plasmalogen demonstrate a reduced capacity to phagocytize opsonized zymosan particles.

View Article and Find Full Text PDF

Studies on the heterogeneity and plasticity of macrophage populations led to the identification of two major polarization states: classically activated macrophages or M1, induced by IFN-γ plus LPS, and alternatively activated macrophages, induced by IL-4. We studied the expression of multiple phospholipase A2 enzymes in human macrophages and the effect that polarization of the cells has on their levels. At least 11 phospholipase A2 genes were found at significant levels in human macrophages, as detected by quantitative PCR.

View Article and Find Full Text PDF

The classical regard of lipid droplets as mere static energy-storage organelles has evolved dramatically. Nowadays these organelles are known to participate in key processes of cell homeostasis, and their abnormal regulation is linked to several disorders including metabolic diseases (diabetes, obesity, atherosclerosis or hepatic steatosis), inflammatory responses in leukocytes, cancer development and neurodegenerative diseases. Hence, the importance of unraveling the cell mechanisms controlling lipid droplet biosynthesis, homeostasis and degradation seems evident Phospholipase A2s, a family of enzymes whose common feature is to hydrolyze the fatty acid present at the sn-2 position of phospholipids, play pivotal roles in cell signaling and inflammation.

View Article and Find Full Text PDF

Activation of macrophages with stimuli of the innate immune response results in the intense remodeling of arachidonate-containing phospholipids, leading to the mobilization of large quantities of this fatty acid for conversion into biologically active eicosanoids. As a consequence of this process, the arachidonate levels in membrane phospholipids markedly decrease. We have applied mass spectrometry-based lipid profiling to study the levels of arachidonate-containing phospholipids under inflammatory activation of macrophages.

View Article and Find Full Text PDF

Exposure of human peripheral blood monocytes to free arachidonic acid (AA) results in the rapid induction of lipid droplet (LD) formation by these cells. This effect appears specific for AA in that it is not mimicked by other fatty acids, whether saturated or unsaturated. LDs are formed by two different routes: (i) the direct entry of AA into triacylglycerol and (ii) activation of intracellular signaling, leading to increased triacylglycerol and cholesteryl ester formation utilizing fatty acids coming from the de novo biosynthetic route.

View Article and Find Full Text PDF

Cells metabolize arachidonic acid (AA) to adrenic acid (AdA) via 2-carbon elongation reactions. Like AA, AdA can be converted into multiple oxygenated metabolites, with important roles in various physiological and pathophysiological processes. However, in contrast to AA, there is virtually no information on how the cells regulate the availability of free AdA for conversion into bioactive products.

View Article and Find Full Text PDF