Publications by authors named "Julio Bruna"

The water scarcity crisis is currently deepened by the presence of emerging contaminants, such as amoxicillin (AMX), threatening ecosystems and living beings due to their toxicity and bioaccumulation. Due to this, in the present study, superabsorbent hydrogels reinforced with oxidized cellulose nanocrystals (CCNC) were developed, forming semi-interpenetrated networks with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS). The CCNCs were obtained by acid hydrolysis and subsequent chemical oxidation to introduce carboxylate groups with two different levels (low and high) of 200 mmol kg (L-CCNC) and 677 mmol kg (H-CCNC), respectively.

View Article and Find Full Text PDF

The antimicrobial activity of an aqueous extract of the leaves of (cav.) Cabrera against microorganisms of food importance was evaluated. First, the leaf aqueous extract of was characterized, quantifying hydroxycinnamic acids and phenolic compounds.

View Article and Find Full Text PDF

It is known that ethylene plays an important role in the quality characteristics of fruits, especially in storage. To avoid the deterioration of fruits caused by ethylene, titanium dioxide (TiO) has been used due to its photocatalytic capacity. The aim of this study was to develop films based on two types of biopolymers, Mater-Bi (MB) and poly-lactic acid (PLA), with nanoparticles of TiO and to determine their ethylene removal capacity and its application in bananas.

View Article and Find Full Text PDF

Ethylene is a phytohormone that is responsible of fruit and vegetable ripening. TiO has been studied as a possible solution to slowing down unwanted ripening processes, due to its photocatalytic capacity which enables it to remove ethylene. Thus, the objective of this study was to develop nanocomposites based on two types of eco-friendly materials: Mater-Bi (MB) and poly(lactic acid) (PLA) combined with nano-TiO for ethylene removal and to determine their ethylene-removal capacity.

View Article and Find Full Text PDF

Allyl isothiocyanate is an excellent antimicrobial compound that has been applied in the development of active food packaging materials in the last years. However, the high volatility of this compound could prevent a lasting effect over time. In order to avoid this problem, cyclodextrin inclusion complexes have been proposed as an alternative, being beta-cyclodextrin (β-CD) as the main candidate.

View Article and Find Full Text PDF

Bionanocomposites based on Polylactide (PLA) and Polyhydroxybutyrate (PHB) blends were successfully obtained through a combined extrusion and impregnation process using supercritical CO (scCO). Graphene oxide (GO) and cinnamaldehyde (Ci) were incorporated into the blends as nano-reinforcement and an active compound, respectively, separately, and simultaneously. From the results, cinnamaldehyde quantification values varied between 5.

View Article and Find Full Text PDF

Inclusion complexes based on β-cyclodextrin (β-CD) and antimicrobial compounds, were prepared by co-precipitation method, and characterized by entrapment efficiency (EE), thermal analysis, X-ray diffraction, H NMR spectroscopy, and water sorption. In addition, experiments associated to evaluate the effect of relative humidity on the release of active compounds and antifungal tests were performed. The analysis evidenced the encapsulation of active compounds into the β-CD structure with EE of 91 ± 4.

View Article and Find Full Text PDF

Background: The use of biopolymer coatings appears as a good alternative to preserve highly perishable fruits, as well as the environment. Proteins generally produce films with good mechanical properties, although their highly hydrophilic nature limits the use in many applications. Nanoparticles, such as nanoclays, can play a critical role in improving barrier properties.

View Article and Find Full Text PDF

An important issue in food technology is that antimicrobial compounds can be used for various applications, such as the development of antimicrobial active packaging materials. Yet most antimicrobial compounds are volatile and require protection. In the present study, the inclusion complexes of 2-nonanone (2-NN) with β-cyclodextrin (β-CD), were prepared by a co-precipitation method.

View Article and Find Full Text PDF

Nanocomposites based on biopolymers have been recognised as potential materials for the development of new ecofriendly food packaging. In addition, if these materials incorporate active substances in their structure, the potential applications are much higher. Therefore, this work was oriented to develop nanocomposites with antimicrobial activity based on cellulose acetate (CA), a commercial organoclay Cloisite30B (C30B), thymol (T) as natural antimicrobial component and tri-ethyl citrate (TEC) as plasticiser.

View Article and Find Full Text PDF