Several studies with substitution-inert polynuclear platinum(II) complexes (SI-PPC) have been carried out in recent years due to the form of DNA binding presented by these compounds. This form of bonding is achieved by molecular recognition through the formation of non-covalent structures, commonly called phosphate clamps and forks, which generate small extensions of the major and minor grooves. In this work, we use molecular dynamics simulations (MD) to study the formation of these cyclical structures between six different SI-PPCs and a double DNA dodecamer, here called 24_bp_DNA.
View Article and Find Full Text PDF