The seasonal timing of life history transitions is often critical to fitness, and many organisms rely upon environmental cues to match life cycle events with favorable conditions. In plants, the timing of seed germination is mediated by seasonal cues such as rainfall and temperature. Variation in cue responses among species can reflect evolutionary processes and adaptation to local climate and can affect vulnerability to changing conditions.
View Article and Find Full Text PDFThe genetic control of many plant traits can be highly complex. Both allelic variation (sequence change) and dosage variation (copy number change) contribute to a plant's phenotype. While numerous studies have investigated the effect of allelic or dosage variation, very few have documented both within the same system, leaving their relative contribution to phenotypic effects unclear.
View Article and Find Full Text PDFSeveral closely related Myb-like activator proteins are known to have partially redundant functions within the plant circadian clock, but their specific roles are not well understood. To clarify the function of the , , and transcriptional activators, we characterized the growth and clock phenotypes of CRISPR-Cas9-generated single, double, and triple mutants. We found that these genes act synergistically to regulate flowering time, redundantly to regulate leaf growth, and antagonistically to regulate hypocotyl elongation.
View Article and Find Full Text PDFTanoak (Notholithocarpus densiflorus) is an evergreen tree in the Fagaceae family found in California and southern Oregon. Historically, tanoak acorns were an important food source for Native American tribes, and the bark was used extensively in the leather tanning process. Long considered a disjunct relictual element of the Asian stone oaks (Lithocarpus spp.
View Article and Find Full Text PDFIntroduction: Understanding the adaptive capacity to current climate change of drought-sensitive tree species is mandatory, given their limited prospect of migration and adaptation as long-lived, sessile organisms. Knowledge about the molecular and eco-physiological mechanisms that control drought resilience is thus key, since water shortage appears as one of the main abiotic factors threatening forests ecosystems. However, our current background is scarce, especially in conifers, due to their huge and complex genomes.
View Article and Find Full Text PDFMinichromosomes are small, sometimes circular, rearranged chromosomes consisting of one centromere and short chromosomal arms formed by treatments that break DNA, including plant transformation. Minichromosomes have the potential to serve as vectors to quickly move valuable genes across a wide range of germplasm, including into adapted crop varieties. To realize this potential, minichromosomes must be reliably generated, easily manipulated, and stably inherited.
View Article and Find Full Text PDFBrassica napus, a globally important oilseed crop, is an allotetraploid hybrid species with two subgenomes originating from Brassica rapa and Brassica oleracea. The presence of two highly similar subgenomes has made the assembly of a complete draft genome challenging and has also resulted in natural homoeologous exchanges between the genomes, resulting in variations in gene copy number, which further complicates assigning sequences to correct chromosomes. Despite these challenges, high-quality draft genomes of this species have been released.
View Article and Find Full Text PDFEffective insect pollination requires appropriate responses to internal and external environmental cues in both the plant and the pollinator. Helianthus annuus, a highly outcrossing species, is marked for its uniform eastward orientation of mature pseudanthia, or capitula. Here we investigate how this orientation affects floral microclimate and the consequent effects on plant and pollinator interactions and reproductive fitness.
View Article and Find Full Text PDFExquisitely regulated plastid-to-nucleus communication by retrograde signaling pathways is essential for fine-tuning of responses to the prevailing environmental conditions. The plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) has emerged as a stress signal transduced into a diverse ensemble of response outputs. Here, we demonstrate enhanced phytochrome B protein abundance in red light-grown MEcPP-accumulating mutant Arabidopsis () plants relative to wild-type seedlings.
View Article and Find Full Text PDFTerpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S.
View Article and Find Full Text PDFPlants have a variety of strategies to avoid canopy shade and compete with their neighbors for light, collectively called the shade avoidance syndrome (SAS). Plants also have extensive systems to defend themselves against pathogens and herbivores. Defense and shade avoidance are two fundamental components of plant survival and productivity, and there are often tradeoffs between growth and defense.
View Article and Find Full Text PDFCommercial tomato (Solanum lycopersicum) is one of the most widely grown vegetable crops worldwide. Heirloom tomatoes retain extensive genetic diversity and a considerable range of fruit quality and leaf morphological traits. Here the role of leaf morphology was investigated for its impact on fruit quality.
View Article and Find Full Text PDFPlant developmental dynamics can be heritable, genetically correlated with fitness and yield, and undergo selection. Therefore, characterizing the mechanistic connections between the genetic architecture governing plant development and the resulting ontogenetic dynamics of plants in field settings is critically important for agricultural production and evolutionary ecology. We use hierarchical Bayesian Function-Valued Trait (FVT) models to estimate Brassica rapa growth curves throughout ontogeny, across two treatments, and in two growing seasons.
View Article and Find Full Text PDFIntegration of environmental signals with endogenous biological processes is essential for organisms to thrive in their natural environment. Being entrained by periodic environmental changes, the circadian clock incorporates external information to coordinate physiological processes, phasing them to the optimal time of the day and year. Here, we present a pivotal role for the clock component GIGANTEA (GI) as a genome-wide regulator of transcriptional networks mediating growth and adaptive processes in plants.
View Article and Find Full Text PDFis a medicinal plant of the Apiaceae family that has traditionally been used for its therapeutic value. Particularly, terpenoid and phenylpropanoid metabolites, major components of the root-derived oleo-gum-resin, exhibit anti-inflammatory and cytotoxic activities, thus offering a resource for potential therapeutic lead compounds. However, genes and enzymes for terpenoid and coumarin-type phenylpropanoid metabolism have thus far remained uncharacterized in Comparative transcriptome analysis of roots, leaves, stems, and flowers was combined with computational annotation to identify candidate genes with probable roles in terpenoid and coumarin biosynthesis.
View Article and Find Full Text PDF(, AACC), is an economically important allotetraploid crop species that resulted from hybridization between two diploid species, (AA) and (CC). We have created one new synthetic genotype Da-Ae (AACC) and one introgression line Da-Ol-1 (AACC), which were used to generate an F mapping population. Plants in this F mapping population varied in fatty acid content, flowering time, and growth-related traits.
View Article and Find Full Text PDFA network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth-promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode-specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli.
View Article and Find Full Text PDFPlants have sophisticated mechanisms for sensing neighbor shade. To maximize their ability to compete for light, plants respond to shade through enhanced elongation and physiological changes. The shade avoidance response affects many different organs and growth stages, yet the signaling pathways underlying this response have mostly been studied in seedlings.
View Article and Find Full Text PDFCircadian clocks have evolved independently in all three domains of life, suggesting that internal mechanisms of time-keeping are adaptive in contemporary populations. However, the performance consequences of either discrete or quantitative clock variation have rarely been tested in field settings. Clock sensitivity of diverse segregating lines to the environment remains uncharacterized as do the statistical genetic parameters that determine evolutionary potential.
View Article and Find Full Text PDFThe geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources.
View Article and Find Full Text PDFis a model species for agronomic, ecological, evolutionary, and translational studies. Here, we describe high-density SNP discovery and genetic map construction for a recombinant inbred line (RIL) population derived from field collected RNA sequencing (RNA-Seq) data. This high-density genotype data enables the detection and correction of putative genome misassemblies and accurate assignment of scaffold sequences to their likely genomic locations.
View Article and Find Full Text PDF