Publications by authors named "Julika Pitsch"

Roughly 80% of the global burden of epilepsy resides in low- and middle-income countries (LMICs; WHO, 2022). Despite numerous new therapies for the treatment of epilepsy, the number of patients who remain resistant to available medications is unchanged. Additionally, no therapy has yet been clinically proven to prevent or attenuate the development of epilepsy in at-risk individuals.

View Article and Find Full Text PDF

The aim of the present study was to review the current knowledge on the neuropathological spectrum of late onset epilepsies. Several terms including 'neuropathology*' AND 'late onset epilepsy' (LOE) combined with distinct neuropathological diagnostic terms were used to search PubMed until November 15, 2023. We report on the relevance of definitional aspects of LOE with implications for the diagnostic spectrum of epilepsies.

View Article and Find Full Text PDF

Full-length RIM1 and 2 are key components of the presynaptic active zone that ubiquitously control excitatory and inhibitory neurotransmitter release. Here, we report that the function of the small RIM isoform RIM4, consisting of a single C2 domain, is strikingly different from that of the long isoforms. RIM4 is dispensable for neurotransmitter release but plays a postsynaptic, cell type-specific role in cerebellar Purkinje cells that is essential for normal motor function.

View Article and Find Full Text PDF

Transient brain insults including status epilepticus (SE) can initiate a process termed 'epileptogenesis' that results in chronic temporal lobe epilepsy. As a consequence, the entire tri-synaptic circuit of the hippocampus is fundamentally impaired. A key role in epileptogenesis has been attributed to the CA1 region as the last relay station in the hippocampal circuit and as site of aberrant plasticity, e.

View Article and Find Full Text PDF

Long-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are.

View Article and Find Full Text PDF

Gangliogliomas (GGs) represent the most frequent glioneuronal tumor entity associated with chronic recurrent seizures; rare anaplastic GGs variants retain the glioneuronal character. So far, key mechanisms triggering chronic hyperexcitability in the peritumoral area are unresolved. Based on a recent mouse model for anaplastic GG (BRAF, mTOR activation and Trp53) we here assessed the influence of GG-secreted factors on non-neoplastic cells in-vitro.

View Article and Find Full Text PDF
Article Synopsis
  • - Autoimmune limbic encephalitis (ALE) is characterized by new seizures, memory issues, and changes in behavior and cognition, primarily affecting the mesial temporal lobe.
  • - CD8 T cells are important in cases without detectable autoantibodies, but identifying these patients is challenging, highlighting the need for better imaging techniques.
  • - The use of [F]DPA-714-PET-MRI to visualize microglia activation in the hippocampus and amygdala shows promise for assessing innate immunity in patients with CD8 T cell-mediated ALE, and findings were supported by results in a mouse model.
View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a tightly and actively regulated vascular barrier. Answering fundamental biological and translational questions about the BBB with currently available approaches is hampered by a trade-off between accessibility and biological validity. We report an approach combining micropipette-based local perfusion of capillaries in acute brain slices with multiphoton microscopy.

View Article and Find Full Text PDF

Gangliogliomas (GGs), composed of dysmorphic neurons and neoplastic astroglia, represent the most frequent tumor entity associated with chronic recurrent epileptic seizures. So far, a systematic analysis of potential differences in neurochemical profiles of dysmorphic tumoral neurons as well as neurons of the peritumoral microenvironment (PTME) was hampered by the inability to unequivocally differentiate between the distinct neuronal components in human GG biopsies. Here, we have applied a novel GG mouse model that allows to clearly resolve the neurochemical profiles of GG-intrinsic versus PTME neurons.

View Article and Find Full Text PDF

Epilepsy is a heterogeneous disorder characterized by spontaneous seizures and behavioral comorbidities. The underlying mechanisms of seizures and epilepsy across various syndromes lead to diverse clinical presentation and features. Similarly, animal models of epilepsy arise from numerous dissimilar inciting events.

View Article and Find Full Text PDF

Objective: Some patients unexpectedly display an unfavorable cognitive course after epilepsy surgery subsequent to any direct cognitive sequelae of the surgical treatment. Therefore, we conducted in-depth neuropathological examinations of resective specimens from corresponding patients to provide insights as to the underlying disease processes.

Methods: In this study, cases with significant cognitive deterioration following a previous postoperative assessment were extracted from the neuropsychological database of a longstanding epilepsy surgical program.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is one of the syndromes linked to antibodies against glutamic acid decarboxylase (GAD). It has been questioned whether 'limbic encephalitis with GAD antibodies' is a meaningful diagnostic entity. The immunopathogenesis of GAD-TLE has remained enigmatic.

View Article and Find Full Text PDF

Objective: Inflammation of brain structures, in particular the hippocampal formation, can induce neuronal degeneration and be associated with increased excitability manifesting as propensity for repetitive seizures. An increase in the abundance of individual proinflammatory molecules including interleukin 1 beta has been observed in brain tissue samples of patients with pharmacoresistant temporal lobe epilepsy (TLE) and corresponding animal models. The NLRP3-inflammasome, a cytosolic protein complex, acts as a key regulator in proinflammatory innate immune signalling.

View Article and Find Full Text PDF

Patients with anti-leucine-rich glioma-inactivated 1 protein (LGI1) or anti-contactin-associated protein 2 (CASPR2) antibody encephalitis typically present with frequent epileptic seizures. The seizures generally respond well to immunosuppressive therapy, and the long-term seizure outcome seems to be favorable. Consequentially, diagnosing acute symptomatic seizures secondary to autoimmune encephalitis instead of autoimmune epilepsy was proposed.

View Article and Find Full Text PDF

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry.

View Article and Find Full Text PDF

Background: Developmental brain tumors harboring BRAFV600E somatic mutation are diverse. Here, we describe molecular factors that determine BRAFV600E-induced tumor biology and function.

Methods: Intraventricular in utero electroporation in combination with the piggyBac transposon system was utilized to generate developmental brain neoplasms, which were comprehensively analyzed with regard to growth using near-infrared in-vivo imaging, transcript signatures by RNA sequencing, and neuronal activity by multielectrode arrays.

View Article and Find Full Text PDF

Objective: Direct pathogenic effects of autoantibodies to the 65 kDa isoform of glutamic acid decarboxylase (GAD65) in autoimmune limbic encephalitis (LE) have been questioned due to its intracellular localization. We therefore hypothesized a pathogenic role for T cells.

Methods: We assessed magnet resonance imaging, neuropsychological and peripheral blood, and CSF flow cytometry data of 10 patients with long-standing GAD65-LE compared to controls in a cross-sectional manner.

View Article and Find Full Text PDF

Fundamental work on the mechanisms leading to focal epileptic discharges in mesial temporal lobe epilepsy (MTLE) often rests on the use of rodent models in which an initial status epilepticus (SE) is induced by kainic acid or pilocarpine. In 2008 we reviewed how, following systemic injection of pilocarpine, the main subsequent events are the initial SE, the latent period, and the chronic epileptic state. Up to a decade ago, rats were most often employed and they were frequently analysed only behaviorally.

View Article and Find Full Text PDF

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture.

View Article and Find Full Text PDF

New onset temporal seizures are increasingly encountered in adult patients. Many of those fulfill diagnostic criteria for possible or definite limbic encephalitis (LE). LE is associated with autoantibodies (autoABs) against neuronal surface structures ('neuronal' autoABs), 'onconeuronal' or GAD65.

View Article and Find Full Text PDF

Pathogenic germline mutations in lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available.

View Article and Find Full Text PDF

Objective: Limbic encephalitis (LE) comprises a spectrum of inflammatory changes in affected brain structures including the presence of autoantibodies and lymphoid cells. However, the potential of distinct lymphocyte subsets alone to elicit key clinicopathological sequelae of LE potentially inducing temporal lobe epilepsy (TLE) with chronic spontaneous seizures and hippocampal sclerosis (HS) is unresolved.

Methods: Here, we scrutinized pathogenic consequences emerging from CD8 T cells targeting hippocampal neurons by recombinant adeno-associated virus-mediated expression of the model-autoantigen ovalbumin (OVA) in CA1 neurons of OT-I/RAG1 mice (termed "OVA-CD8 LE model").

View Article and Find Full Text PDF

Temporal lobe adult-onset seizures (TAOS) related to autoimmunity represent an increasingly recognized disease syndrome within the spectrum of epilepsies. In this context, certain autoantibodies (autoABs) were often associated with limbic encephalitis (LE). Here, we aimed to gain insights into (a) the distribution of 'neurological' autoABs (neuroABs, defined as autoABs targeting neuronal surface structures or 'onconeuronal' ABs or anti-glutamate acid decarboxylase 65 (GAD65) autoABs) in a large consecutive TAOS patient cohort, to characterize (b) clinical profiles of seropositive versus seronegative individuals and to find (c) potential evidence for other autoABs.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers utilized various techniques, including immunoblotting and mass spectrometry, to identify Drebrin as the target antigen in patients' sera, finding a strong correlation with seizure activity and other neurological symptoms.
  • * The findings suggest that anti-Drebrin autoantibodies may contribute to a chronic neurological syndrome characterized by repeated seizures, memory issues, and brain inflammation, indicating potential targets for immunosuppressive therapies.
View Article and Find Full Text PDF

Background: Neuropathic pain resulting from peripheral nerve lesions is a common medical condition, but current analgesics are often insufficient. The identification of key molecules involved in pathological pain processing is a prerequisite for the development of new analgesic drugs. Hyperexcitability of nociceptive DRG-neurons due to regulation of voltage-gated ion-channels is generally assumed to contribute strongly to neuropathic pain.

View Article and Find Full Text PDF