We present practical solutions to applying Gaussian-process (GP) methods to calculate spatial statistics for grid cells in large environments. GPs are a data efficient approach to inferring neural tuning as a function of time, space, and other variables. We discuss how to design appropriate kernels for grid cells, and show that a variational Bayesian approach to log-Gaussian Poisson models can be calculated quickly.
View Article and Find Full Text PDFAutomated home-cage monitoring systems present a valuable tool for comprehensive phenotyping of natural behaviors. However, current systems often involve complex training routines, water or food restriction, and probe a limited range of behaviors. Here, we present a fully automated home-cage monitoring system for cognitive and behavioral phenotyping in mice.
View Article and Find Full Text PDFGrid cells and place cells represent the spatiotemporal continuum of an animal's past, present, and future locations. However, their spatiotemporal relationship is unclear. Here, we co-record grid and place cells in freely foraging rats.
View Article and Find Full Text PDFLong-term memory tests are commonly used to facilitate the diagnosis of hippocampal-related neurological disorders such as Alzheimer's disease due to their relatively high specificity and sensitivity to damage to the medial temporal lobes compared to standard commonly used clinical tests. Pathological changes in Alzheimer's disease start years before the formal diagnosis is made, partially due to testing too late. This proof-of-concept exploratory study aimed to assess the feasibility of introducing an unsupervised digital platform for continuous testing of long-term memory over long periods outside the laboratory environment.
View Article and Find Full Text PDFThere are currently a number of theories of rodent hippocampal function. They fall into two major groups that differ in the role they impute to space in hippocampal information processing. On one hand, the cognitive map theory sees space as crucial and central, with other types of nonspatial information embedded in a primary spatial framework.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFGrid cells are neurons active in multiple fields arranged in a hexagonal lattice and are thought to represent the "universal metric for space." However, they become nonhomogeneously distorted in polarized enclosures, which challenges this view. We found that local changes to the configuration of the enclosure induce individual grid fields to shift in a manner inversely related to their distance from the reconfigured boundary.
View Article and Find Full Text PDFHere we describe the honeycomb maze, a behavioural paradigm for the study of spatial navigation in rats. The maze consists of 37 platforms that can be raised or lowered independently. Place navigation requires an animal to go to a goal platform from any of several start platforms via a series of sequential choices.
View Article and Find Full Text PDFCells in the mammalian hippocampal formation subserve neuronal representations of environmental location and support navigation in familiar environments. Grid cells constitute one of the main cell types in the hippocampal formation and are widely believed to represent a universal metric of space independent of external stimuli. Recent evidence showing that grid symmetry is distorted in non-symmetrical environments suggests that a re-examination of this hypothesis is warranted.
View Article and Find Full Text PDFWe determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli.
View Article and Find Full Text PDFGrid cells represent an animal's location by firing in multiple fields arranged in a striking hexagonal array. Such an impressive and constant regularity prompted suggestions that grid cells represent a universal and environmental-invariant metric for navigation. Originally the properties of grid patterns were believed to be independent of the shape of the environment and this notion has dominated almost all theoretical grid cell models.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2014
The mammalian hippocampal formation provides neuronal representations of environmental location but the underlying mechanisms are unclear. The majority of cells in medial entorhinal cortex and parasubiculum show spatially periodic firing patterns. Grid cells exhibit hexagonal symmetry and form an important subset of this more general class.
View Article and Find Full Text PDFThe mammalian hippocampal formation provides neuronal representations of environmental location, but the underlying mechanisms are poorly understood. Here, we report a class of cells whose spatially periodic firing patterns are composed of plane waves (or bands) drawn from a discrete set of orientations and wavelengths. The majority of cells recorded in parasubicular and medial entorhinal cortices of freely moving rats belonged to this class and included grid cells, an important subset that corresponds to three bands at 60° orientations and has the most stable firing pattern.
View Article and Find Full Text PDFClimbing fiber input produces complex spike synchrony across populations of cerebellar Purkinje cells oriented in the parasagittal axis. Elucidating the fine spatial structure of this synchrony is crucial for understanding its role in the encoding and processing of sensory information within the olivocerebellar cortical circuit. We investigated these issues using in vivo multineuron two-photon calcium imaging in combination with information theoretic analysis.
View Article and Find Full Text PDF