Publications by authors named "Julija Baltusnikaite-Guzaitiene"

Regenerated cellulose fibers are a highly adaptable biomaterial with numerous medical applications owing to their inherent biocompatibility, biodegradability, and robust mechanical properties. In the domain of wound care, regenerated cellulose fibers facilitate a moist environment conducive to healing, minimize infection risk, and adapt to wound topographies, making it ideal for different types of dressings. In tissue engineering, cellulose scaffolds provide a matrix for cell attachment and proliferation, supporting the development of artificial skin, cartilage, and other tissues.

View Article and Find Full Text PDF

The influence of different concentrations of salt-added polyethylene oxide (PEO) on the spinnability of chitosan (CS)/PEO + NaCl blends that could be used as a component part of filters for water treatment or nanofiber membranes as well as for medical applications was investigated in this study. The morphological properties of manufactured nanofibers were analyzed as well. It was determined that an increase of PEO concentration resulted mostly in thin and round nanofibers formed during electrospinning, but the manufacturing process became complex, because many wet fibers reached the collector while spinning.

View Article and Find Full Text PDF

This study presents the investigation of the electromagnetic properties and resistance performance of electrically conductive fabrics coated with composition containing the conjugated polymer system poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). The developed fabrics were intended for electromagnetic radiation (EMR) shielding in microwave range and for absorbing microwaves in radar operating range, so as to act as radar absorbing materials (RAM). The measurements of reflection and transmission of the developed fabrics were performed in a frequency range of 2-18 GHz, which covers the defined frequencies relevant to the application.

View Article and Find Full Text PDF

Phase changing materials (PCMs) microcapsules MPCM32D, consisting of a polymeric melamine-formaldehyde (MF) resin shell surrounding a paraffin core (melting point: 30-32 °C), have been modified by introducing thermally conductive additives on their outer shell surface. As additives, multiwall carbon nanotubes (MWCNTs) and poly (3,4-ethylenedioxyoxythiophene) poly (styrene sulphonate) (PEDOT: PSS) were used in different parts by weight (1 wt.%, 5 wt.

View Article and Find Full Text PDF

The purpose of this study is to investigate the thermoregulatory properties of polyethylene terephthalate (PET) 3D knitted materials with bioceramic additives which are highly absorbing far-infrared (FIR) radiation. Ceramic materials are well-known and useful for thermal insulation applications. In order to compare different types of ceramic additives and coating methods for their incorporation into textile, several types of ceramic compounds with heat-retaining function were selected: germanium (Ge), aluminum (Al) and silicon (Si) additives were applied by impregnation in squeezing padder and titanium (Ti) by the screen printing method.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnev59pk30fl2770cf3uj3ans7hc26255): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once