Publications by authors named "Juliette J Commodore"

The lanthanide ion praseodymium, Pr(III), was employed to study metallated ion formation and electron transfer dissociation (ETD) of 27 biological and model highly acidic phosphopeptides. All phosphopeptides investigated form metallated ions by electrospray ionization (ESI) that can be studied by ETD to yield abundant sequence information. The ions formed are [M + Pr - H] , [M + Pr] , and [M + Pr + H] .

View Article and Find Full Text PDF

Rationale: Production of multiply protonated ions by electrospray ionization (ESI) is important to the analysis of peptides by mass spectrometry. For small neutral and acidic peptides, addition of chromium(III) greatly increases the intensity of doubly protonated ions. The current study examines instrumental and solution parameters that maximize peptide ion charge by ESI.

View Article and Find Full Text PDF

Using the lanthanide ion praseodymium, Pr(III), metallated ion formation and electron transfer dissociation (ETD) were studied for 25 biological and model acidic peptides. For chain lengths of seven or more residues, even highly acidic peptides that can be difficult to protonate by electrospray ionization will metallate and undergo abundant ETD fragmentation. Peptides composed of predominantly acidic residues form only the deprotonated ion, [M + Pr - H] ; this ion yields near complete ETD sequence coverage for larger peptides.

View Article and Find Full Text PDF

Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H](4+), [M + Met](3+), and [M + Met -H](2+), where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues.

View Article and Find Full Text PDF

While trivalent chromium has been shown at high doses to have pharmacological effects improving insulin resistance in rodent models of insulin resistance, the mechanism of action of chromium at a molecular level is not known. The chromium-binding and transport agent low-molecular-weight chromium-binding substance (LMWCr) has been proposed to be the biologically active form of chromium. LMWCr has recently been shown to be comprised of a heptapeptide of the sequence EEEEDGG.

View Article and Find Full Text PDF

The addition of chromium(III) nitrate to solutions of peptides with seven or more residues greatly increases the formation of doubly protonated peptides, [M + 2H](2+), by electrospray ionization. The test compound heptaalanine has only one highly basic site (the N-terminal amino group) and undergoes almost exclusive single protonation using standard solvents. When Cr(III) is added to the solution, abundant [M + 2H](2+) forms, which involves protonation of the peptide backbone or the C-terminus.

View Article and Find Full Text PDF