The YtlI regulator of Bacillus subtilis activates the transcription of the ytmI operon encoding an l-cystine ABC transporter, a riboflavin kinase, and proteins of unknown function. The expression of the ytlI gene and the ytmI operon was high with methionine and reduced with sulfate. Using deletions and site-directed mutagenesis, a cis-acting DNA sequence important for YtlI-dependent regulation was identified upstream from the -35 box of ytmI.
View Article and Find Full Text PDFIn this study, we carried out a detailed structural and functional analysis of a Streptococcus agalactiae (GBS) two-component system which is orthologous to the CovS/CovR (CsrS/CsrR) regulatory system of Streptococcus pyogenes. In GBS, covR and covS are part of a seven gene operon transcribed from two promoters that are not regulated by CovR. A DeltacovSR mutant was found to display dramatic phenotypic changes such as increased haemolytic activity and reduced CAMP activity on blood agar.
View Article and Find Full Text PDFThe YycG/YycF two-component system, originally identified in Bacillus subtilis, is very highly conserved and appears to be specific to low G + C Gram-positive bacteria. This system is required for cell viability, although the basis for this and the nature of the YycF regulon remained elusive. Using a combined hybrid regulator/transcriptome approach involving the inducible expression of a PhoP'-'YycF chimerical protein in B.
View Article and Find Full Text PDFMultiple regulatory mechanisms for coping with stress co-exist in low G+C Gram-positive bacteria. Among these, the HrcA and CtsR repressors control distinct regulons in the model organism, Bacillus subtilis. We recently identified an orthologue of the CtsR regulator of stress response in the major pathogen, Staphylococcus aureus.
View Article and Find Full Text PDF