This article focuses on conceptual and methodological developments allowing the integration of physical and social dynamics leading to model forecasts of circumstance-specific human losses during a flash flood. To reach this objective, a random forest classifier is applied to assess the likelihood of fatality occurrence for a given circumstance as a function of representative indicators. Here, vehicle-related circumstance is chosen as the literature indicates that most fatalities from flash flooding fall in this category.
View Article and Find Full Text PDFSummary: Among classical methods for module detection, SpaCEM(3) provides ad hoc algorithms that were shown to be particularly well adapted to specific features of biological data: high-dimensionality, interactions between components (genes) and integrated treatment of missingness in observations. The software, currently in its version 2.0, is developed in C++ and can be used either via command line or with the GUI under Linux and Windows environments.
View Article and Find Full Text PDFThe different measurement techniques that interrogate biological systems provide means for monitoring the behavior of virtually all cell components at different scales and from complementary angles. However, data generated in these experiments are difficult to interpret. A first difficulty arises from high-dimensionality and inherent noise of such data.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2008
We address the issue of classifying complex data. We focus on three main sources of complexity, namely the high dimensionality of the observed data, the dependencies between these observations and the general nature of the noise model underlying their distribution. We investigate the recent Triplet Markov Fields and propose new models in this class designed for such data and in particular allowing very general noise models.
View Article and Find Full Text PDF