Background: Inflammation is a key element in the initiation and progression of peripheral arterial disease (PAD). Understanding the impact of inflammatory molecules, as cytokines in PAD could help us to improve the prognosis of these patients. The main goal of this study was to compare the serum level of cytokines between patients with claudication to those with chronic limb-threatening ischemia (CLTI).
View Article and Find Full Text PDFThe main goal of this study was to assess whether the presence of peripheral arterial disease (PAD) correlates with increased inflammatory cell infiltration. An observational, single-centre, and prospective study was conducted from January 2018 to July 2022. Clinical characteristics and anthropometric measures were registered.
View Article and Find Full Text PDFAdvanced urothelial bladder cancer (UBC) patients are tagged by a dismal prognosis and high mortality rates, mostly due to their poor response to standard-of-care platinum-based therapy. Mediators of chemoresistance are not fully elucidated. This work aimed to study the metabolic profile of advanced UBC, in the context of cisplatin resistance.
View Article and Find Full Text PDFThe Warburg Effect is characterized by high rates of glucose uptake and lactate production. Monocarboxylate transporters (MCTs) are crucial to avoid cellular acidosis by internal lactate accumulation, being largely overexpressed by cancer cells and associated with cancer aggressiveness. The MCT1-specific inhibitor AZD3965 has shown encouraging results in different cancer models.
View Article and Find Full Text PDFBackground: The loss of skeletal muscle is a prognostic factor in several diseases including in patients with chronic limb threatening ischemia (CLTI). Patients with CLTI also have a lower skeletal mass and area when compared to those with claudication. However, there are no currently available data regarding the histological characteristics of core muscles in patients with CLTI.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) is a highly heterogenous disease not sensitive to endocrine or HER2 therapy and standardized treatment regimens are still missing. Therefore, development of novel TNBC treatment approaches is of utmost relevance. Herein, the potential of MAPK/ERK downregulation by RNAi-based therapeutics in a panel of mesenchymal stem-like TNBC cell lines was uncovered.
View Article and Find Full Text PDFThe prevalence of obesity has doubled, with a concomitant increase in cardiovascular disease. This study aimed to compare the characteristics of visceral, subcutaneous and peri-aortic adipose tissue determined with computed tomography (CT) scans and to correlate them with cardiovascular risk factors, anthropometric measures and medication. An observational and prospective study was conducted, and 177 subjects were included.
View Article and Find Full Text PDFOral potentially malignant disorders (OPMD) are associated with an increased risk of oral squamous cell carcinoma (OSCC). OSCC has an aggressive profile and is the most prevalent among different head and neck malignancies. Most OSCC patients are diagnosed with advanced stage tumors and have a poor prognosis.
View Article and Find Full Text PDFEnergy production by cancer is driven by accelerated glycolysis, independently of oxygen levels, which results in increased lactate production. Lactate is shuttled to and from cancer cells via monocarboxylate transporters (MCTs). MCT1 works both as an importer and an extruder of lactate, being widely studied in recent years and generally associated with a cancer aggressiveness phenotype.
View Article and Find Full Text PDFProliferating cancer cells are able to reprogram their energy metabolism, favouring glycolysis even in the presence of oxygen and fully functioning mitochondria. Research is needed to validate the glycolysis-related proteins as prognostic/predictive biomarkers in urothelial bladder carcinoma (UBC), a malignancy tagged by high recurrence rates and poor response to chemotherapy. Here, we assessed GLUT1, HK2, PFKL, PKM2, phospho-PDH, and LDHA immunoexpression in 76 UBC samples, differentiating among urothelial, fibroblast, and endothelial cells and among normoxic versus hypoxic areas.
View Article and Find Full Text PDFIntroduction: Esophageal cancer (EC) seems to display increased glycolytic activity, but clinical studies on the expression/prognostic significance of glycometabolism-related proteins, as well as functional assays, are missing.
Methods: Expression of 10 glycolytic biomarkers was evaluated by immunohistochemistry in tissue sections from 95 patients. Two esophageal squamous cell carcinoma (ESCC) cell lines were used to assess the effect of monocarboxylate transporter (MCT) downregulation on cell viability and extracellular lactate/glucose accumulation.
As a result of metabolic reprogramming, cancer cells display high rates of glycolysis, causing an excess production of lactate along with an increase in extracellular acidity. Proton-linked monocarboxylate transporters (MCTs) are crucial in the maintenance of this metabolic phenotype, by mediating the proton-coupled lactate flux across cell membranes, also contributing to cancer cell pH regulation. Among the proteins codified by the SLC16 gene family, MCT1 and MCT4 isoforms are the most explored in cancers, being overexpressed in many cancer types, from solid tumours to haematological malignancies.
View Article and Find Full Text PDFProliferating cancer cells have high energy demands, which is mainly obtained through glycolysis. The transmembrane trafficking of lactate, a major metabolite produced by glycolytic cancer cells, relies on monocarboxylate transporters (MCTs). MCT1 optimally imports lactate, although it can work bidirectionally, and its activity has been linked to cancer aggressiveness and poor outcomes.
View Article and Find Full Text PDFTo sustain their high proliferation rates, most cancer cells rely on glycolytic metabolism, with production of lactic acid. For many years, lactate was seen as a metabolic waste of glycolytic metabolism; however, recent evidence has revealed new roles of lactate in the tumor microenvironment, either as metabolic fuel or as a signaling molecule. Lactate plays a key role in the different models of metabolic crosstalk proposed in malignant tumors: among cancer cells displaying complementary metabolic phenotypes and between cancer cells and other tumor microenvironment associated cells, including endothelial cells, fibroblasts, and diverse immune cells.
View Article and Find Full Text PDFReprogramming of energy metabolism is a key hallmark of cancer. Most cancer cells display a glycolytic phenotype, with increased glucose consumption and glycolysis rates, and production of lactate as the end product, independently of oxygen concentrations. This phenomenon, known as "Warburg Effect", provides several survival advantages to cancer cells and modulates the metabolism and function of neighbour cells in the tumour microenvironment.
View Article and Find Full Text PDFBladder cancer - the tenth most frequent cancer worldwide - has a heterogeneous natural history and clinical behaviour. The predominant histological subtype, urothelial bladder carcinoma, is characterized by high recurrence rates, progression and both primary and acquired resistance to platinum-based therapy, which impose a considerable economic burden on health-care systems and have substantial effects on the quality of life and the overall outcomes of patients with bladder cancer. The incidence of urothelial tumours is increasing owing to population growth and ageing, so novel therapeutic options are vital.
View Article and Find Full Text PDFPurpose: Increased glycolytic activity with accumulation of extracellular lactate is regarded as a hallmark of cancer. In lymphomas, FDG-PET has undeniable diagnostic and prognostic value, corroborating that these tumours are avid for glucose. However, the role of glycolytic metabolism-related molecules in lymphoma is not well known.
View Article and Find Full Text PDFMonocarboxylate transporters (MCTs) are vital for intracellular pH homeostasis by extruding lactate from highly glycolytic cells. These molecules are key players of the metabolic reprogramming of cancer cells, and evidence indicates a potential contribution in urothelial bladder cancer (UBC) aggressiveness and chemoresistance. However, the specific role of MCTs in the metabolic compartmentalization within bladder tumors, namely their preponderance on the tumor stroma, remains to be elucidated.
View Article and Find Full Text PDFThe relapsing and progressive nature of bladder tumors, and the heterogeneity in the response to cisplatin-containing regimens, are the major concerns in the care of urothelial bladder carcinoma (UBC) patients. The metabolic adaptations that alter the tumor microenvironment and thus contribute to chemoresistance have been poorly explored in UBC setting. We found significant associations between the immunoexpressions of the microenvironment-related molecules CD147, monocarboxylate transporters (MCTs) 1 and 4, CD44 and CAIX in tumor tissue sections from 114 UBC patients.
View Article and Find Full Text PDFUrothelial bladder carcinoma (UBC) is heterogeneous in its pathology and clinical behaviour. Evaluation of prognostic and predictive biomarkers is necessary, in order to produce personalised treatment options. The present study used immunohistochemistry to evaluate UBC sections containing tumour and non-tumour areas from 76 patients, for the detection of p-mTOR, CD31 and D2-40 (blood and lymphatic vessels identification, respectively).
View Article and Find Full Text PDFUrothelial bladder cancer (UBC) is a heterogeneous type of disease. It is urgent to screen biomarkers of tumour aggressiveness in order to clarify the clinical behaviour and to personalize therapy in UBC patients. Raf kinase inhibitory protein (RKIP) is a metastasis suppressor, and its downregulation is associated with metastatic events in an increasing number of solid tumours.
View Article and Find Full Text PDFThis study aimed to assess the distribution of VEGF-C and VEGFR-3 expression in gastrointestinal stromal tumours (GISTs), and to analyse the value of lymphatic vessel density (LVD) in a tumour that is believed to preferentially metastasize through blood vessel conduits. A panel of immunohistochemical antibodies was used to evaluate 51 cases of genetically characterised GISTs: VEGF-C, VEGFR-3, D2-40 (for LVD assessment) and CD31 (for blood vessel density--BDV--assessment). The results were correlated with the clinical-pathological data.
View Article and Find Full Text PDFAims: Bladder cancer is the second most common malignancy of the urogenital region. The majority of bladder cancer deaths occur as a consequence of metastatic disease. Blood vessel density (BVD), a surrogate marker for angiogenesis, has been shown to be predictive of progression and poor prognosis, as well as lymphatic vessel density (LVD).
View Article and Find Full Text PDFBackground: Sirolimus was originally used as an immunosuppressant drug but recent reports have indicated that it may have other potential biological effects as an anticancer drug. The chemopreventive efficacy of sirolimus was evaluated in an experimental model of invasive urinary bladder cancer.
Materials And Methods: ICR mice received N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) in drinking water for a period of twelve weeks.