Toll-like receptor (TLR) agonists are being developed as anti-cancer therapeutics due to their potent immunostimulatory properties. However, clinical trials testing TLR agonists as monotherapy have often failed to demonstrate significant improvement over standard of care. We hypothesized that the anti-cancer efficacy of TLR agonist immunotherapy could be improved by combinatorial approaches.
View Article and Find Full Text PDFPre-clinical studies developing novel therapies to prevent cancer recurrence require appropriate surgical models. Here, we present a protocol for surgical debulking of subcutaneous tumors in mice, which allows for intraoperative application of immunotherapy-loaded biomaterials. We describe steps for inoculating tumor cells, anesthetizing mice, and performing surgery.
View Article and Find Full Text PDFIn the past two decades, genome editing has proven its value as a powerful tool for modeling or even treating numerous diseases. After the development of protein-guided systems such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), which for the first time made DNA editing an actual possibility, the advent of RNA-guided techniques has brought about an epochal change. Based on a bacterial anti-phage system, the CRISPR/Cas9 approach has provided a flexible and adaptable DNA-editing system that has been able to overcome several limitations associated with earlier methods, rapidly becoming the most common tool for both disease modeling and therapeutic studies.
View Article and Find Full Text PDF