Monitoring pathogen circulation in wildlife sentinel populations can help to understand and predict the spread of disease at the wildlife-livestock-human interface. Immobile young provide a useful target population for disease surveillance, since they can be easily captured for sampling and their levels of antibodies against infectious agents can provide an index of localized circulation. However, early-life immune responses include both maternally-derived antibodies and antibodies resulting from exposure to pathogens, and disentangling these two processes requires understanding their individual dynamics.
View Article and Find Full Text PDFTelemetry is a powerful and indispensable tool for evaluating wildlife movement and distribution patterns, particularly in systems where opportunities for direct observation are limited. However, the effort and expense required to track individuals often results in small sample sizes, which can lead to biased results if the sample of tracked individuals does not fully capture spatial, temporal, and individual variability within the target population. To better understand the influence of sampling design on results of automated radio telemetry studies, we conducted a retrospective power analysis of very high frequency (VHF) radio telemetry data from the Motus Wildlife Tracking System for two species of birds along the United States Atlantic coast: a shorebird, the piping plover (Charadrius melodus), and a nearshore seabird, the common tern (Sterna hirundo).
View Article and Find Full Text PDFThe northern Gulf of Mexico supports a diverse community of nearshore seabirds during both breeding and nonbreeding periods of the annual cycle and is also a highly industrialized marine ecosystem with substantial levels of oil and gas development particularly in the west and central regions. Stakeholders in the region often assess risk to species of interest based on these differing levels of development. We collected blood samples from 81 adult and 35 chick eastern brown pelicans () from 10 colonies across the northern Gulf of Mexico and used these to establish baseline values for hematology and blood biochemistry.
View Article and Find Full Text PDFBackground: Mobile organisms in marine environments are expected to modify their behavior in response to external stressors. Among environmental drivers of animal movement are long-term climatic indices influencing organism distribution and short-term meteorological events anticipated to alter acute movement behavior. However, few studies exist documenting the response of vagile species to meteorological anomalies in coastal and marine systems.
View Article and Find Full Text PDFConservation of long-distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic.
View Article and Find Full Text PDFModeling organism distributions from survey data involves numerous statistical challenges, including accounting for zero-inflation, overdispersion, and selection and incorporation of environmental covariates. In environments with high spatial and temporal variability, addressing these challenges often requires numerous assumptions regarding organism distributions and their relationships to biophysical features. These assumptions may limit the resolution or accuracy of predictions resulting from survey-based distribution models.
View Article and Find Full Text PDFDensity-dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central-place foragers has been extensively studied in seabirds; however, most studies have focused on effects of intraspecific competition during the breeding season, while little is known about whether density-dependent resource depletion influences individual migratory behavior outside the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown pelican (), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico.
View Article and Find Full Text PDFThe effects of acute environmental stressors on reproduction in wildlife are often difficult to measure because of the labour and disturbance involved in collecting accurate reproductive data. Stress hormones represent a promising option for assessing the effects of environmental perturbations on altricial young; however, it is necessary first to establish how stress levels are affected by environmental conditions during development and whether elevated stress results in reduced survival and recruitment rates. In birds, the stress hormone corticosterone is deposited in feathers during the entire period of feather growth, making it an integrated measure of background stress levels during development.
View Article and Find Full Text PDF