During the last decade, we have persistently addressed the question, "how can the innate immune system be used as a therapeutic tool to eliminate cancer?" A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent.
View Article and Find Full Text PDFCurcumin has been at the center of vigorous research and major debate during the past decade. Inspired by its anti-inflammatory properties, many curcumin-based products are being sold now to manage various forms of arthritis. Parallel preclinical studies have established its role in dissolving beta-amyloid plaques, tau-based neurofibrillary tangles, and also alpha-synuclein-linked protein aggregates typically observed in Parkinson's disease.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is a primary brain tumor with a 5-year survival rate of ≤5%. We have shown earlier that GBM-antibody-linked curcumin (CC) and also phytosomal curcumin (CCP) rescue 50-60% of GBM-bearing mice while repolarizing the tumor-associated microglia/macrophages (TAM) from the tumor-promoting M2-type to the tumoricidal M1-type. However, systemic application of CCP yields only sub-IC50 concentrations of CC in the plasma, which is unlikely to kill GBM cells directly.
View Article and Find Full Text PDFGlioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.
View Article and Find Full Text PDFCurcumin (from curry) (C) is highly potent against cervical cancer cells (CCC), but poor bioavailability has limited its clinical use. Similar natural polyphenols resveratrol (from grapes) (R), and epicatechin gallate (from green tea) (E) also display activity against CCC. By treating CCC (HeLa) with C, E, or R, or combinations of these compounds, we computed combination indices and observed a strong synergism among C, E, and R at the unique molar ratio 4:1:12.
View Article and Find Full Text PDFGlioblastoma (GBM) is one of the most pernicious forms of cancer and currently chances of survival from this malady are extremely low. We have used the noninvasive strategy of intranasal (IN) delivery of a glioblastoma-directed adduct of curcumin (CC), CC-CD68Ab, into the brain of mouse GBM GL261-implanted mice to study the effect of CC on tumor remission and on the phenotype of the tumor-associated microglial cells (TAMs). The treatment caused tumor remission in 50% of GL261-implanted GBM mice.
View Article and Find Full Text PDF