Synthetic messenger RNA (mRNA)-based therapeutics are an increasingly popular approach to gene and cell therapies, genome engineering, enzyme replacement therapy, and now, during the global SARS-CoV-2 pandemic, vaccine development. mRNA for such purposes can be synthesized through an enzymatic in vitro transcription (IVT) reaction and formulated for in vivo delivery. Mature mRNA requires a 5'-cap for gene expression and mRNA stability.
View Article and Find Full Text PDFc-Myc is an important transcription factor that regulates cellular proliferation, cell growth, and differentiation. A number of transcriptional co-factors for c-Myc have been described that have binding sites within highly conserved regions of the c-Myc transactivational domain (TAD). Given the importance of the c-Myc TAD, we set out to identify new proteins that interact with this region using a yeast two-hybrid assay.
View Article and Find Full Text PDFThe c-Myc transcription factor is a key regulator of cell proliferation and cell fate decisions. c-Myc overexpression is observed in a variety of human tumors, revealing the importance of maintaining normal levels of c-Myc protein. c-Myc protein stability in mammalian cells is controlled by interdependent and sequential phosphorylation and dephosphorylation events on two highly conserved residues, serine 62 and threonine 58.
View Article and Find Full Text PDF