Publications by authors named "Julienne P"

Efimov trimers are exotic three-body quantum states that emerge from the different types of three-body continua in the vicinity of two-atom Feshbach resonances. In particular, as the strength of the interaction is decreased to a critical point, an Efimov state merges into the atom-dimer threshold and eventually dissociates into an unbound atom-dimer pair. Here we explore the Efimov state in the vicinity of this critical point using coherent few-body spectroscopy in Li atoms using a narrow two-body Feshbach resonance.

View Article and Find Full Text PDF

We explore the physical origin and the general validity of a propensity rule for the conservation of the hyperfine spin state in three-body recombination. This rule was recently discovered for the special case of ^{87}Rb with its nearly equal singlet and triplet scattering lengths. Here, we test the propensity rule for ^{85}Rb for which the scattering properties are very different from ^{87}Rb.

View Article and Find Full Text PDF

We study three-atom inelastic scattering in ultracold ^{39}K near a Feshbach resonance of intermediate coupling strength. The nonuniversal character of such resonance leads to an abnormally large Efimov absolute length scale and a relatively small effective range r_{e}, allowing the features of the ^{39}K Efimov spectrum to be better isolated from the short-range physics. Meticulous characterization of and correction for finite-temperature effects ensure high accuracy on the measurements of these features at large-magnitude scattering lengths.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the original paper has been published.
  • The amendment can be accessed through a link provided at the top of the paper.
  • Readers are encouraged to check the link for the updated information.
View Article and Find Full Text PDF

We perform precise studies of two- and three-body interactions near an intermediate-strength Feshbach resonance in ^{39}K at 33.5820(14) G. Precise measurement of dimer binding energies, spanning three orders of magnitude, enables the construction of a complete two-body coupled-channel model for determination of the scattering lengths with an unprecedented low uncertainty.

View Article and Find Full Text PDF

Several extensions to the Standard Model of particle physics, including light dark matter candidates and unification theories predict deviations from Newton's law of gravitation. For macroscopic distances, the inverse-square law of gravitation is well confirmed by astrophysical observations and laboratory experiments. At micrometer and shorter length scales, however, even the state-of-the-art constraints on deviations from gravitational interaction, whether provided by neutron scattering or precise measurements of forces between macroscopic bodies, are currently many orders of magnitude larger than gravity itself.

View Article and Find Full Text PDF

Alkaline-earth atoms have metastable 'clock' states with minute-long optical lifetimes, high-spin nuclei and SU(N)-symmetric interactions, making them powerful platforms for atomic clocks, quantum information processing and quantum simulation. Few-particle systems of such atoms provide opportunities to observe the emergence of complex many-body phenomena with increasing system size. Multi-body interactions among particles are emergent phenomena, which cannot be broken down into sums over underlying pairwise interactions.

View Article and Find Full Text PDF

Feshbach resonances, which allow for tuning the interactions of ultracold atoms with an external magnetic field, have been widely used to control the properties of quantum gases. We propose a scheme for using scattering resonances as a probe for external fields, showing that by carefully tuning the parameters it is possible to reach a 10^{-5}  G (or nT) level of precision with a single pair of atoms. We show that, for our collisional setup, it is possible to saturate the quantum precision bound with a simple measurement protocol.

View Article and Find Full Text PDF

We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to consider them as massive particles. In contrast to atoms and nuclei, the photons have a large anisotropy between their longitudinal mass, arising from dispersion, and their transverse mass, arising from diffraction.

View Article and Find Full Text PDF

Experimental investigation of chemical reactions with full quantum state resolution for all reactants and products has been a long-term challenge. Here we prepare an ultracold few-body quantum state of reactants and demonstrate state-to-state chemistry for the recombination of three spin-polarized ultracold rubidium (Rb) atoms to form a weakly bound Rb molecule. The measured product distribution covers about 90% of the final products, and we are able to discriminate between product states with a level splitting as small as 20 megahertz multiplied by Planck's constant.

View Article and Find Full Text PDF

Multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms. We observe a shift in the scattering length where the first atom-dimer resonance appears in the ^{41}K-^{87}Rb system relative to the position of the previously observed atom-dimer resonance in the ^{40}K-^{87}Rb system. This shift is well explained by our calculations with a three-body model including van der Waals interactions, and, more importantly, multichannel spinor physics.

View Article and Find Full Text PDF

Polar molecules in an optical lattice provide a versatile platform to study quantum many-body dynamics. Here we use such a system to prepare a density distribution where lattice sites are either empty or occupied by a doublon composed of an interacting Bose-Fermi pair. By letting this out-of-equilibrium system evolve from a well-defined, but disordered, initial condition, we observe clear effects on pairing that arise from inter-species interactions, a higher partial-wave Feshbach resonance and excited Bloch-band population.

View Article and Find Full Text PDF

We develop a general quantum theory for reactive collisions involving power-law potentials (-1/r(n)) valid from the ultracold up to the high-temperature limit. Our quantum defect framework extends the conventional capture models to include the nonuniversal case when the short-range reaction probability P(re)<1. We present explicit analytical formulas as well as numerical studies for the van der Waals (n=6) and polarization (n=4) potentials.

View Article and Find Full Text PDF

We perform radio-frequency dissociation spectroscopy of weakly bound 6Li2 Feshbach molecules using low-density samples of about 30 molecules in an optical dipole trap. Combined with a high magnetic field stability, this allows us to resolve the discrete trap levels in the radio-frequency dissociation spectra. This novel technique allows the binding energy of Feshbach molecules to be determined with unprecedented precision.

View Article and Find Full Text PDF

We report the successful production of subradiant states of a two-atom system in a three-dimensional optical lattice starting from doubly occupied sites in a Mott insulator phase of a quantum gas of atomic ytterbium. We can selectively produce either a subradiant 1(g) state or a superradiant 0(u) state by choosing the excitation laser frequency. The inherent weak excitation rate for the subradiant 1(g) state is overcome by the increased atomic density due to the tight confinement in a three-dimensional optical lattice.

View Article and Find Full Text PDF

We study the resonant control of two nonreactive polar molecules in an optical lattice site, focusing on the example of RbCs. Collisional control can be achieved by tuning bound states of the intermolecular dipolar potential by varying the applied electric field or trap frequency. We consider a wide range of electric fields and trapping geometries, showing that a three-dimensional optical lattice allows significantly wider avoided crossings than free space or quasi-two dimensional geometries.

View Article and Find Full Text PDF

We perform a systematic investigation of the electronic properties of the (2)Σ(+) ground state of Li-alkaline-earth dimers. These molecules are proposed as possible candidates for quantum simulation of lattice-spin models. We apply powerful quantum chemistry coupled-cluster method and large basis sets to calculate potential energies and permanent dipole moments for the LiBe, LiMg, LiCa, LiSr, and LiYb molecules.

View Article and Find Full Text PDF

We report on the observation of triatomic Efimov resonances in an ultracold gas of cesium atoms. Exploiting the wide tunability of interactions resulting from three broad Feshbach resonances in the same spin channel, we measure magnetic-field dependent three-body recombination loss. The positions of the loss resonances yield corresponding values for the three-body parameter, which in universal few-body physics is required to describe three-body phenomena and, in particular, to fix the spectrum of Efimov states.

View Article and Find Full Text PDF

Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas.

View Article and Find Full Text PDF

Universal collision rate constants are calculated for ultracold collisions of two like bosonic or fermionic heteronuclear alkali-metal dimers involving the species Li, Na, K, Rb, or Cs. Universal collisions are those for which the short range probability of a reactive or quenching collision is unity such that a collision removes a pair of molecules from the sample. In this case, the collision rates are determined by universal quantum dynamics at very long range compared to the chemical bond length.

View Article and Find Full Text PDF

Analytic expressions describe universal elastic and reactive rates of quasi-two-dimensional and quasi-one-dimensional collisions of highly reactive ultracold molecules interacting by a van der Waals potential. Exact and approximate calculations for the example species KRb show that stability and evaporative cooling can be realized for spin-polarized fermions at moderate dipole and trapping strength, whereas bosons or unlike fermions require significantly higher dipole or trapping strengths.

View Article and Find Full Text PDF

A simple quantum-defect model gives analytic expressions for the complex scattering length and threshold collision rates of ultracold molecules. If the probability of reaction in the short-range part of the collision is high, the model gives universal rate constants for s- and p-wave collisions that are independent of short-range dynamics. This model explains the magnitudes of the recently measured rate constants for collisions of two ultracold 40K87Rb molecules, or an ultracold 40K atom with the 40K87Rb molecule [S.

View Article and Find Full Text PDF