This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode.
View Article and Find Full Text PDFCombinations of scanning electrochemical microscopy (SECM) with other scanning probe microscopy techniques, such as atomic force microscopy (AFM), show great promise for directing localized modification, which is of great interest for chemical, biochemical and technical applications. Herein, an atomic force scanning electrochemical microscope is used as a new electrochemical lithographic tool (L-AFM-SECM) to locally electrograft, with submicrometer resolution, a non-conducting organic coating on a conducting substrate.
View Article and Find Full Text PDFAn atomic force microscope was used so as to structure by nanofriction films of polynitrophenylene electrografted on substrates of n-type silicon (100) with the native oxide on the top of the surface. AFM measurements of thin films thickness have been carried out in the electrolytic solution for different applied potentials during the electrografting. This investigation allows (i) to determine the relationship between the applied potential and the final thickness of electrografted polyphenylene films and (ii) to specify how the thin layers grow.
View Article and Find Full Text PDFElectrografting is a powerful and versatile technique for modifying and decorating conducting surfaces with organic matter. Mainly based on the electro-induced polymerization of dissolved electro-active monomers on metallic or semiconducting surfaces, it finds applications in various fields including biocompatibility, protection against corrosion, lubrication, soldering, functionalization, adhesion, and template chemistry. Starting from experimental observations, this Review highlights the mechanism of the formation of covalent metal-carbon bonds by electro-induced processes, together with major applications such as derivatization of conducting surfaces with biomolecules that can be used in biosensing, lubrication of low-level electrical contacts, reversible trapping of ionic waste on reactive electrografted surfaces as an alternative to ion-exchange resins, and localized modification of conducting surfaces, a one-step process providing submicrometer grafted areas and which is used in microelectronics.
View Article and Find Full Text PDF