Publications by authors named "Julien Vincent Brugniaux"

Purpose: Both prolonged exercise and acute high-altitude exposure are known to induce cardiac changes. We sought to describe the cardiac responses to speed climbing at high-altitude, including left ventricular (LV) performance assessment using the myocardial work index (MWI), a new index derived from 2D speckle tracking echocardiography (STE).

Methods: Eleven elite alpinists (9 males, age: 26 ± 4 years) were evaluated before and immediately after a speed ascent of the Mont-Blanc (4808 m) by echocardiography using conventional measurements as well as STE and MWI computation with derivate parameters as global work efficiency (GWE) or global wasted work (GWW).

View Article and Find Full Text PDF

Purpose: The combined effects of acute hypoxia and exercise on cognition remain to be clarified. We investigated the effect of speed climbing to high altitude on reactivity and inhibitory control in elite climbers.

Methods: Eleven elite climbers performed a speed ascent of the Mont-Blanc (4810 m) and were evaluated pre- (at 1000 m) and immediately post-ascent (at 3835 m).

View Article and Find Full Text PDF

Molecular oxygen (O) is a vital element in human survival and plays a major role in a diverse range of biological and physiological processes. Although normobaric hyperoxia can increase arterial oxygen content ([Formula: see text]), it also causes vasoconstriction and hence reduces O delivery in various vascular beds, including the heart, skeletal muscle, and brain. Thus, a seemingly paradoxical situation exists in which the administration of oxygen may place tissues at increased risk of hypoxic stress.

View Article and Find Full Text PDF

We aimed to develop new equations that predict exercise-induced energy expenditure (EE) more accurately than previous ones during running by including new parameters as fitness level, body composition and/or running intensity in addition to heart rate (HR). Original equations predicting EE were created from data obtained during three running intensities (25%, 50% and 70% of HR reserve) performed by 50 subjects. Five equations were conserved according to their accuracy assessed from error rates, interchangeability and correlations analyses: one containing only basic parameters, two containing VO2max or speed at VO2max and two including running speed with or without HR.

View Article and Find Full Text PDF