Aging is one of the strongest risk factor for Alzheimer's disease (AD). However, several data suggest that dyslipidemia can either contribute or serve as co-factors in AD appearance. AD could be examined as a metabolic disorder mediated by peripheral insulin resistance.
View Article and Find Full Text PDFOne main mechanism of insulin resistance (IR), a key feature of type 2 diabetes, is the accumulation of saturated fatty acids (FAs) in the muscles of obese patients with type 2 diabetes. Understanding the mechanism that underlies lipid-induced IR is an important challenge. Saturated FAs are metabolized into lipid derivatives called ceramides, and their accumulation plays a central role in the development of muscle IR.
View Article and Find Full Text PDFAims/hypothesis: Dietary n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), are known to influence glucose homeostasis. We recently showed that Elovl2 expression in beta cells, which regulates synthesis of endogenous DHA, was associated with glucose tolerance and played a key role in insulin secretion. The present study aimed to examine the role of the very long chain fatty acid elongase 2 (ELOVL2)/DHA axis on the adverse effects of palmitate with high glucose, a condition defined as glucolipotoxicity, on beta cells.
View Article and Find Full Text PDFExpert Opin Ther Targets
January 2017
Introduction: Obesity is a major factor that is linked to the development of type 2 diabetes (T2D). Excess circulating fatty acids (FAs), which characterize obesity, induce insulin resistance, steatosis, β cells dysfunction and apoptosis. These deleterious effects have been defined as lipotoxicity.
View Article and Find Full Text PDFPancreatic β cells secrete insulin in order to maintain glucose homeostasis. However, various environmental stresses such as obesity have been shown to induce loss of secretory responsiveness in pancreatic β cells and pancreatic β cell apoptosis which can favor the development of type 2 diabetes (T2D). Indeed, elevated levels of free fatty acids (FFAs) have been shown to induce β cell apoptosis.
View Article and Find Full Text PDFSphingoid base-1-phosphates represent a very low portion of the sphingolipid pool but are potent bioactive lipids in mammals. This study was undertaken to determine whether these lipids are produced in palmitate-treated pancreatic β cells and what role they play in palmitate-induced β cell apoptosis. Our lipidomic analysis revealed that palmitate at low and high glucose supplementation increased (dihydro)sphingosine-1-phosphate levels in INS-1 β cells.
View Article and Find Full Text PDFPancreatic β-cell apoptosis induced by palmitate requires high glucose concentrations. Ceramides have been suggested to be important mediators of glucolipotoxicity-induced β-cell apoptosis. In INS-1 β-cells, 0.
View Article and Find Full Text PDF