IEEE Trans Vis Comput Graph
September 2024
This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step for the analysis and visualization of scalar data. Given an input scalar field f and a set of "signal" persistence pairs to maintain, our approaches produces an output field g that is close to f and which optimizes (i) the cancellation of "non-signal" pairs, while (ii) preserving the "signal" pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2024
Topological abstractions offer a method to summarize the behavior of vector fields, but computing them robustly can be challenging due to numerical precision issues. One alternative is to represent the vector field using a discrete approach, which constructs a collection of pairs of simplices in the input mesh that satisfies criteria introduced by Forman's discrete Morse theory. While numerous approaches exist to compute pairs in the restricted case of the gradient of a scalar field, state-of-the-art algorithms for the general case of vector fields require expensive optimization procedures.
View Article and Find Full Text PDFThis system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids) for the support of topological analysis pipelines, i.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2024
This article presents a computational framework for the Wasserstein auto-encoding of merge trees (MT-WAE), a novel extension of the classical auto-encoder neural network architecture to the Wasserstein metric space of merge trees. In contrast to traditional auto-encoders which operate on vectorized data, our formulation explicitly manipulates merge trees on their associated metric space at each layer of the network, resulting in superior accuracy and interpretability. Our novel neural network approach can be interpreted as a non-linear generalization of previous linear attempts (Pont et al.
View Article and Find Full Text PDFThis article presents a computational framework for the concise encoding of an ensemble of persistence diagrams, in the form of weighted Wasserstein barycenters Turner et al. (2014), Vidal et al. (2020) of a dictionary of atom diagrams.
View Article and Find Full Text PDFComparative visualization of scalar fields is often facilitated using similarity measures such as edit distances. In this paper, we describe a novel approach for similarity analysis of scalar fields that combines two recently introduced techniques: Wasserstein geodesics/barycenters as well as path mappings, a branch decomposition-independent edit distance. Effectively, we are able to leverage the reduced susceptibility of path mappings to small perturbations in the data when compared with the original Wasserstein distance.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
April 2024
This article presents a well-scaling parallel algorithm for the computation of Morse-Smale (MS) segmentations, including the region separators and region boundaries. The segmentation of the domain into ascending and descending manifolds, solely defined on the vertices, improves the computational time using path compression and fully segments the border region. Region boundaries and region separators are generated using a multi-label marching tetrahedra algorithm.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2023
This paper introduces an efficient algorithm for persistence diagram computation, given an input piecewise linear scalar field f defined on a d-dimensional simplicial complex K, with d ≤ 3. Our work revisits the seminal algorithm "PairSimplices" [31], [103] with discrete Morse theory (DMT) [34], [80], which greatly reduces the number of input simplices to consider. Further, we also extend to DMT and accelerate the stratification strategy described in "PairSimplices" [31], [103] for the fast computation of the 0 and (d-1) diagrams, noted D(f) and D(f).
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2023
A novel strategy for extracting axial (AV) and toroidal (TV) vortices in the magnetically-induced current density (MICD) in molecular systems is introduced, and its pilot application to LiH molecule is demonstrated. It exploits differences in the topologies of AV and TV cores and involves two key steps: selecting a scalar function that can describe vortex cores in MICD and its subsequent topological analysis. The scalar function of choice is based on the velocity-gradient method known in research on classical flows.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2023
This article presents a computational framework for the Principal Geodesic Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated Principal Component Analysis (PCA) framework (K. Pearson 1901) to the Wasserstein metric space of merge trees (Pont et al. 2022).
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2022
This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [104] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the $L$2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees.
View Article and Find Full Text PDFThis article introduces progressive algorithms for the topological analysis of scalar data. Our approach is based on a hierarchical representation of the input data and the fast identification of topologically invariant vertices, which are vertices that have no impact on the topological description of the data and for which we show that no computation is required as they are introduced in the hierarchy. This enables the definition of efficient coarse-to-fine topological algorithms, which leverage fast update mechanisms for ordinary vertices and avoid computation for the topologically invariant ones.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2021
Multidimensional Projection is a fundamental tool for high-dimensional data analytics and visualization. With very few exceptions, projection techniques are designed to map data from a high-dimensional space to a visual space so as to preserve some dissimilarity (similarity) measure, such as the Euclidean distance for example. In fact, although adopting distinct mathematical formulations designed to favor different aspects of the data, most multidimensional projection methods strive to preserve dissimilarity measures that encapsulate geometric properties such as distances or the proximity relation between data objects.
View Article and Find Full Text PDFThis paper describes a localized algorithm for the topological simplification of scalar data, an essential pre-processing step of topological data analysis (TDA). Given a scalar field f and a selection of extrema to preserve, the proposed localized topological simplification (LTS) derives a function g that is close to f and only exhibits the selected set of extrema. Specifically, sub- and superlevel set components associated with undesired extrema are first locally flattened and then correctly embedded into the global scalar field, such that these regions are guaranteed-from a combinatorial perspective-to no longer contain any undesired extrema.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
August 2019
This paper presents an efficient algorithm for the progressive approximation of Wasserstein barycenters of persistence diagrams, with applications to the visual analysis of ensemble data. Given a set of scalar fields, our approach enables the computation of a persistence diagram which is representative of the set, and which visually conveys the number, data ranges and saliences of the main features of interest found in the set. Such representative diagrams are obtained by computing explicitly the discrete Wasserstein barycenter of the set of persistence diagrams, a notoriously computationally intensive task.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2018
This paper presents a new approach for the visualization and analysis of the spatial variability of features of interest represented by critical points in ensemble data. Our framework, called Persistence Atlas, enables the visualization of the dominant spatial patterns of critical points, along with statistics regarding their occurrence in the ensemble. The persistence atlas represents in the geometrical domain each dominant pattern in the form of a confidence map for the appearance of critical points.
View Article and Find Full Text PDFThis system paper presents the Topology ToolKit (TTK), a software platform designed for the topological analysis of scalar data in scientific visualization. While topological data analysis has gained in popularity over the last two decades, it has not yet been widely adopted as a standard data analysis tool for end users or developers. TTK aims at addressing this problem by providing a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more.
View Article and Find Full Text PDFIsosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2017
This paper presents an efficient algorithm for the computation of the Reeb space of an input bivariate piecewise linear scalar function f defined on a tetrahedral mesh. By extending and generalizing algorithmic concepts from the univariate case to the bivariate one, we report the first practical, output-sensitive algorithm for the exact computation of such a Reeb space. The algorithm starts by identifying the Jacobi set of f, the bivariate analogs of critical points in the univariate case.
View Article and Find Full Text PDFGigapixel panoramas are an increasingly popular digital image application. They are often created as a mosaic of many smaller images. The mosaic acquisition can take many hours causing the individual images to differ in exposure and lighting conditions.
View Article and Find Full Text PDFMorse-Smale (MS) complexes have been gaining popularity as a tool for feature-driven data analysis and visualization. However, the quality of their geometric embedding and the sole dependence on the input scalar field data can limit their applicability when expressing application-dependent features. In this paper we introduce a new combinatorial technique to compute an MS complex that conforms to both an input scalar field and an additional, prior segmentation of the domain.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2014
Interactions between atoms have a major influence on the chemical properties of molecular systems. While covalent interactions impose the structural integrity of molecules, noncovalent interactions govern more subtle phenomena such as protein folding, bonding or self assembly. The understanding of these types of interactions is necessary for the interpretation of many biological processes and chemical design tasks.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
October 2012
Creating high-quality quad meshes from triangulated surfaces is a highly nontrivial task that necessitates consideration of various application specific metrics of quality. In our work, we follow the premise that automatic reconstruction techniques may not generate outputs meeting all the subjective quality expectations of the user. Instead, we put the user at the center of the process by providing a flexible, interactive approach to quadrangulation design.
View Article and Find Full Text PDFThe broad goals of verifiable visualization rely on correct algorithmic implementations. We extend a framework for verification of isosurfacing implementations to check topological properties. Specifically, we use stratified Morse theory and digital topology to design algorithms which verify topological invariants.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2011
Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution.
View Article and Find Full Text PDF