Publications by authors named "Julien Sallais"

Preeclampsia is a serious pregnancy disorder that lacks effective treatments other than delivery. Improper sensing of oxygen changes during placentation by prolyl hydroxylases (PHDs), specifically PHD2, causes placental hypoxia-inducible factor-1 (HIF1) buildup and abnormal downstream signaling in early-onset preeclampsia, yet therapeutic targeting of HIF1 has never been attempted. Here we generated a conditional (placenta-specific) knockout of Phd2 in mice (Phd2-/- cKO) to reproduce HIF1 excess and to assess anti-HIF therapy.

View Article and Find Full Text PDF

Dynamic changes in physiologic oxygen are required for proper placenta development; yet, when low-oxygen levels persist, placental development is halted, culminating in preeclampsia (PE), a serious complication of pregnancy. Considering mitochondria's function is intimately linked to oxygen changes, we investigated the impact of oxygen on mitochondrial dynamics in placental mesenchymal stromal cells (pMSCs) that are vital for proper placental development. Transmission electron microscopy, proximity ligation assays for mitochondrial VDAC1 and endoplasmic reticulum IP3R, and immunoanalyses of p-DRP1 and OPA1, demonstrate that low-oxygen conditions in early 1st trimester and PE promote mitochondrial fission in pMSCs.

View Article and Find Full Text PDF

The mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O- and Fe-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation.

View Article and Find Full Text PDF

Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts.

View Article and Find Full Text PDF

Introduction: Gestational diabetes mellitus (GDM), a common pregnancy disorder, increases the risk of fetal overgrowth and later metabolic morbidity in the offspring. The placenta likely mediates these sequelae, but the exact mechanisms remain elusive. Mitochondrial dynamics refers to the joining and division of these organelles, in attempts to maintain cellular homeostasis in stress conditions or alterations in oxygen and fuel availability.

View Article and Find Full Text PDF

Adaptations to changes in oxygen are critical to ensure proper placental development, and impairments in oxygen sensing mechanisms characterize placental pathologies such as preeclampsia. In this study, we examined the involvement of SUMOylation, a reversible posttranslational modification, in the regulation of the asparaginyl hydroxylase Factor Inhibiting Hypoxia Inducible Factor 1 (FIH1) in the human placenta in development and in disease status. FIH1 protein abundance and spatial distribution in the developing placenta directly correlated with oxygen tension .

View Article and Find Full Text PDF

Introduction: Hypoxia-inducible factor 1A (HIF1A) stability is tightly regulated by hydroxylation and ubiquitination. Emerging evidence indicates that HIF1A is also controlled by the interplay between SUMO-specific ligases, which execute protein SUMOylation, and Sentrin/SUMO-specific proteases that de-SUMOylate target proteins. Given the significance of HIF1A in the human placenta, we investigated whether placental HIF1A is subject to SUMOylation in physiological and pathological conditions.

View Article and Find Full Text PDF

Context: Sphingolipids function as key bioactive mediators that regulate cell fate events in a variety of systems. Disruptions in sphingolipid metabolism characterize several human pathologies.

Objective: In the present study we examined sphingolipid metabolism in intrauterine growth restriction (IUGR), a severe disorder complicating 4-7% of pregnancies at increased risk of perinatal morbidity and mortality, which is characterized by placental dysfunction and augmented trophoblast cell death rates.

View Article and Find Full Text PDF