Purpose: To develop a novel instrument for real-time quality assurance (QA) procedures in radiotherapy. The system implements a scintillation-based phantom and associated signal acquisition and processing modules and aims to monitor two-dimensional (2D) dose distributions of small fields.
Materials And Methods: For the proposed phantom, we have designed and realized a prototype implementing six high-resolution tissue-equivalent scintillating fiber ribbons stacked with in-plane 30° rotated orientations from each other.
Gallium nitride (GaN), a direct-gap semiconductor that is radioluminescent, can be used as a transducer yielding a high signal from a small detecting volume and thus potentially suitable for use in small fields and for high dose gradients. A common drawback of semiconductor dosimeters with effective atomic numbers higher than soft tissues is that their responses depend on the presence of low energy photons for which the photoelectric cross section varies strongly with atomic number, which may affect the accuracy of dosimetric measurements. To tackle this 'over-response' issue, we propose a model for GaN-based dosimetry with readout correction.
View Article and Find Full Text PDF