Silencing disease-related genes in the central nervous system (CNS) using short interfering RNA (siRNA) holds great promise for treating neurological disorders. Yet, delivery of RNAi therapeutics to the brain poses major challenges to non-viral systems, especially when considering systemic administration. Cationic nanoparticles have been widely investigated for siRNA delivery, but the tendency of these to aggregate in physiological environments limits their intravenous application.
View Article and Find Full Text PDFProgression of RNA interference-based gene silencing technologies for the treatment of disorders of the central nervous system (CNS) depends on the availability of efficient non-toxic nanocarriers. Despite advances in the field of nanotechnology undesired and non-specific interactions with different brain-cell types occur and are poorly investigated. To this end, we studied the cytotoxic and neuroinflammatory effects of widely-used transfection reagents and modified amphiphilic β-cyclodextrins (CDs).
View Article and Find Full Text PDFHuntington's disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a toxic Huntingtin (HTT) protein. The use of short interfering RNAs (siRNAs) to silence the mutant protein is one of the most promising therapeutic strategies under investigation. The biggest caveat to siRNA-based approaches is the lack of efficient and nontoxic delivery vectors for siRNA delivery to the central nervous system.
View Article and Find Full Text PDFA hepta-guanidino-β-cyclodextrin (G-CD), its hepta-PEG conjugate (G-CD-PEG), and the corresponding anisamide-terminated PEG conjugate (G-CD-PEG-AA) have been synthesised and compared as delivery vectors for siRNA to prostate cancer cells and tumours in vivo. The G-CD-PEG-AA.siRNA formulations (in which anisamide targets the sigma receptor), but not the non-targeted formulations, induced prostate cell-specific internalisation of siRNA resulting in approximately 80% knockdown in vitro of the reporter gene, luciferase.
View Article and Find Full Text PDF