The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT.
View Article and Find Full Text PDFThe activities, ontogeny, and mechanisms of lineage expansion of eosinophils are less well resolved than those of other immune cells, despite the use of biological therapies targeting the eosinophilia-promoting cytokine interleukin (IL)-5 or its receptor, IL-5Rα. We combined single-cell proteomics and transcriptomics and generated transgenic IL-5Rα reporter mice to revisit eosinophilopoiesis. We reconciled human and murine eosinophilopoiesis and provided extensive cell-surface immunophenotyping and transcriptomes at different stages along the continuum of eosinophil maturation.
View Article and Find Full Text PDFPancreatic β-cell dysfunction and death contribute to the onset of diabetes, and novel strategies of β-cell function and survival under diabetogenic conditions need to be explored. We previously demonstrated that Isx9, a small molecule based on the isoxazole scaffold, drives neuroendocrine phenotypes by increasing the expression of genes required for β-cell function and improves glycemia in a model of β cell regeneration. We further investigated the role of Isx9 in β-cell survival.
View Article and Find Full Text PDFDiabetes prevalence increases with age, and β-cell dysfunction contributes to the incidence of the disease. Dietary lipids have been recognized as contributory factors in the development and progression of the disease. Unlike long chain triglycerides, medium chain triglycerides (MCT) increase fat burning in animal and human subjects as well as serum C-peptide in type 2 diabetes patients.
View Article and Find Full Text PDFVaccination is the most cost-effective way to control infectious diseases in cattle. However, many infectious diseases leading to severe economical losses worldwide still remain for which a really effective and safe vaccine is not available. These diseases are most often due to intracellular pathogens such as bacteria or viruses, which are, by their localization, protected from antibiotics and/or CD4(+) T cell-dependent humoral responses.
View Article and Find Full Text PDFIn mammals, several genetic pathways have been characterized that govern engagement of multipotent embryonic progenitors into the myogenic program through the control of the key myogenic regulatory gene Myod. Here we demonstrate the involvement of Six homeoproteins. We first targeted into a Pax3 allele a sequence encoding a negative form of Six4 that binds DNA but cannot interact with essential Eya co-factors.
View Article and Find Full Text PDFSatellite cells (SCs) are stem cells that mediate skeletal muscle growth and regeneration. Here, we observe that adult quiescent SCs and their activated descendants expressed the homeodomain transcription factor Six1. Genetic disruption of Six1 specifically in adult SCs impaired myogenic cell differentiation, impaired myofiber repair during regeneration, and perturbed homeostasis of the stem cell niche, as indicated by an increase in SC self-renewal.
View Article and Find Full Text PDFStaphylococcus (S.) aureus is a major pathogen involved in chronic bovine mastitis. Staphylococcal mastitis is difficult to control due to the ability of S.
View Article and Find Full Text PDFAdult skeletal muscles in vertebrates are composed of different types of myofibers endowed with distinct metabolic and contraction speed properties. Genesis of this fiber-type heterogeneity during development remains poorly known, at least in mammals. Six1 and Six4 homeoproteins of the Six/sine oculis family are expressed throughout muscle development in mice, and Six1 protein is enriched in the nuclei of adult fast-twitch myofibers.
View Article and Find Full Text PDF