Publications by authors named "Julien Pons"

Fragment-based drug design consists of identifying low-molecular weight compounds that weakly bind to a target macromolecule and will then be modified or linked to yield potent inhibitors. The specificity of these low-complexity and low-affinity molecules has rarely been discussed in the literature. To address this question, NMR spectroscopy was used to investigate the interactions of 150 fragments with five proteins: three proteins from the Bcl-2 family (Bcl-x(L), Bcl-w, and Mcl-1), human peroxiredoxin 5, for which very few ligands have been reported, and human serum albumin, which is known to bind a large number of ligands.

View Article and Find Full Text PDF

The search for protein ligands is a crucial step in the inhibitor design process. Fragment screening represents an interesting method to rapidly find lead molecules, as it enables the exploration of a larger portion of the chemical space with a smaller number of compounds as compared to screening based on drug-sized molecules. Moreover, fragment screening usually leads to hit molecules that form few but optimal interactions with the target, thus displaying high ligand efficiencies.

View Article and Find Full Text PDF

Fragment-based drug design consists of screening low-molecular-weight compounds in order to identify low-affinity ligands that are then modified or linked to yield potent inhibitors. The method thus attempts to build bioactive molecules in a modular way and relies on the hypothesis that the fragment binding mode will be conserved upon elaboration of the active molecule. If the inverse process is considered, do the fragments resulting from the deconstruction of high-affinity inhibitors recapitulate their binding mode in the large molecule? Few studies deal with this issue.

View Article and Find Full Text PDF

The binding of phosphorylated peptides to the receptor plays a major role in many basic cellular processes in a variety of pathological states. Human beta-TrCP is a key component of a recently characterized E3 ubiquitin ligase complex that regulates protein degradation through the ubiquitin-dependent proteasome pathway. Docking studies were carried out to explore the structural requirements for the beta-TrCP substrates.

View Article and Find Full Text PDF

ATF4 plays a crucial role in the cellular response to stress. The E3 ubiquitin ligase, SCF beta-TrCP protein responsible for ATF4 degradation by the proteasome, binds to ATF4 through a DpSGXXXpS phosphorylation motif, which is similar but not identical to the DpSGXXpS motif found in most other substrates of beta-TrCP. NMR studies were performed on the free and bound forms of a peptide derived from this ATF4 motif that enabled the elucidation of the conformation of the ligand complexed to the beta-TrCP protein and its binding mode.

View Article and Find Full Text PDF

ATF4 plays a crucial role in the cellular response to stress and the F-box protein beta-TrCP, the receptor component of the SCF E3 ubiquitin ligase responsible for ATF4 degradation by the proteasome, binds to ATF4, and controls its stability. Association between the two proteins depends on ATF4 phosphorylation of serine residues 219 and 224 present in the context of DpSGXXXpS, which is similar but not identical to the DpSGXXpS motif found in most other substrates of beta-TrCP. We used NMR spectroscopy to analyze the structure of the 23P-ATF4 peptide.

View Article and Find Full Text PDF

The IkappaB-alpha protein, inhibitor of the transcription factor nuclear factor-kappaB (NF-kappaB), is a cellular substrate of beta-transducin repeat containing protein (beta-TrCP). beta-TrCP is the F-box protein component of an Skp1/Cul1/F-box (SCF)-type ubiquitin ligase complex. beta-TrCP targets the protein IkappaB-alpha for ubiquitination, followed by proteasome degradation.

View Article and Find Full Text PDF

Reestablishment of digestive continuity after radical surgery for severe esophagojejunostomic leakage is a major challenge associated with high morbidity and uncertain feasibility. In this case report we describe a conservative double exclusion technique involving cervical stapling and loop jejunostomy. This technique greatly simplifies subsequent reconstruction and is suitable in most cases.

View Article and Find Full Text PDF