The impact of nanoparticle surface chemistry on cell interactions and especially cell uptake has become evident over the last few years in nanomedicine. Since PEG polymers have proved to be ideal tools for attaining stealthiness and favor escape from the mononuclear phagocytotic system, the accurate control of their geometry is of primary importance and can be achieved through reversible addition-fragmentation transfer (RAFT) polymerization. In this study, we demonstrate that the residual groups of the chain transfer agents (CTAs) introduced in the main chain exert a significant impact on the cellular internalization of functionalized nanoparticles.
View Article and Find Full Text PDFElectron microscopy has proved to be a major tool to study the structure of self-assembled amphiphilic block copolymer particles. These specimens, like supramolecular biological structures, are problematic for electron microscopy because of their poor capacity to scatter electrons and their susceptibility to radiation damage and dehydration. Sub-50 nm core-shell spherical particles made up of poly(hydroxyethyl acrylate)--poly(styrene) are prepared via polymerization-induced self-assembly (PISA).
View Article and Find Full Text PDFLatex templating using core-shell particles represents a unique opportunity to design mesoporous carbons with a high level of control on textural properties. This new class of organic colloid templates is synthesized by polymerization-induced self-assembly (PISA) in which a solvophilic poly(hydroxyethyl acrylate) (PHEA) homopolymer is chain extended with a solvophobic polystyrene (PS) via a photomediated reversible-addition-fragmentation-transfer (RAFT) polymerization. The resultant PHEA--PS diblock copolymer nanoparticles exhibit a PS core stabilized by a PHEA shell, with two blocks characterized by a low molecular weight dispersity (1.
View Article and Find Full Text PDFControlling the interactions of functional nanostructures with water and biological media represents high challenges in the field of bioimaging applications. Large contrast at low doses, high colloidal stability in physiological conditions, the absence of cell cytotoxicity, and efficient cell internalization represent strong additional needs. To achieve such requirements, we report on high-payload magnetofluorescent architectures made of a shell of superparamagnetic iron oxide nanoparticles tightly anchored around fluorescent organic nanoparticles.
View Article and Find Full Text PDFIn this study, we have managed to find the optimal ATRA system that can obtain the highest mono-adduct yields with the purpose of minimizing the chain growth of divinyl monomers. The most highly hyperbranched polymers have been synthesized by the homopolymerization of multi-vinyl monomers via ATRA reaction.
View Article and Find Full Text PDFThe three-dimensional structures of hyperbranched materials have made them attractive in many important applications. However, the preparation of hyperbranched materials remains challenging. The hyperbranched materials from addition polymerization have gained attention, but are still confined to only a low level of branching and often low yield.
View Article and Find Full Text PDFThe use of poly(vinyl acetate) (PVAc) nanogels for the fabrication of patterned porous surfaces is described. These nanogels were synthesized by controlled radical cross-linking copolymerization (CRCC) involving a xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) mechanism. This synthesis methodology allowed for the preparation of nanogels based on PVAc with a controlled constitutive chain length and average numbers of chains and cross-links.
View Article and Find Full Text PDFBranched water-soluble copolymers were obtained by direct radical crosslinking copolymerisation of acrylic acid or acrylamide and N,N'-methylenebisacrylamide at high solid content in the presence of an O-ethylxanthate as a reversible chain transfer agent.
View Article and Find Full Text PDF