The rat dorsomedial (DMS) and dorsolateral striatum (DLS), equivalent to caudate nucleus and putamen in primates, are required for goal-directed and habit behaviour, respectively. However, it is still unclear whether and how this functional dichotomy emerges in the course of learning. In this study, we investigated this issue by recording DMS and DLS single neuron activity in rats performing a continuous spatial alternation task, from the acquisition to optimized performance.
View Article and Find Full Text PDFLow and high beta frequency rhythms were observed in the motor cortex, but their respective sources and behavioral correlates remain unknown. We studied local field potentials (LFPs) during pre-cued reaching behavior in macaques. They contained a low beta band (<20 Hz) dominant in primary motor cortex and a high beta band (>20 Hz) dominant in dorsal premotor cortex (PMd).
View Article and Find Full Text PDFThe medial (MEC) and the lateral (LEC) regions of the entorhinal cortex send a major input to the hippocampus and have been proposed to play a foremost role in combining spatial and non-spatial attributes of episodic memory. In addition, it has been recently suggested that the MEC is involved in the processing of information in a global reference frame and the LEC in the processing of information in a local reference frame. Whether these putative functions could be generalized to navigation contexts has not been established yet.
View Article and Find Full Text PDFWhen facing a choice at a decision point in a maze, rats often display hesitations, pauses and reorientations. Such "vicarious trial and error" (VTE) behavior is thought to reflect decision making about which choice option is best, and thus a deliberation process. Although deliberation relies on a wide neural network, the dorsal hippocampus appears to play a prominent role through both its neural activity and its dynamic interplay with other brain areas.
View Article and Find Full Text PDF