Publications by authors named "Julien Pinaud"

Albeit mechanochemistry is a novel promising technology that gives access to reactivity under solvent-free conditions, heating such reactions is sometimes compulsory to obtain satisfactory results in terms of conversion, selectivity and/or yield. In this work, we developed a novel approach using a dye that absorbs NIR photons and release the energy as heat. Hence, de novo milling jars in epoxy resin doped with the dye were thus produced to obtain reactors that would produce heat upon irradiation at 850 nm.

View Article and Find Full Text PDF

Morpholine-2,5-diones (MDs) are increasingly attractive compounds that can be produced using amino acid (AA) as a starting material. These compounds can undergo polymerization to produce biodegradable materials, namely, polydepsipeptides, that hold the potential to be used in medicinal applications. In this study, a simplified yet high-yield MD synthesis procedure was developed and applied to produce a range of MDs derived from hydrophobic AAs including Leu, Ile, Val, Phe, Asp(OBzl), Lys(Z), and Ser(tBu).

View Article and Find Full Text PDF

The self-assembly of polymers is integral to their role in liquid formulations. In this study, we combine a dye whose lifetime is sensitive to the nanoviscosity of its local environment with shrinking gate fluorescence correlation spectroscopy (sgFCS) to study the self-assembly of a model telechelic polymer, hydrophobically modified ethoxylated urethane (HEUR). Fluorescence lifetime measurements show a monotonic increase in average lifetime with increasing HEUR concentration driven by a small fraction of dye (<1%) with long lifetimes strongly bound to HEUR.

View Article and Find Full Text PDF

Due to growing concerns about environmental issues and the decline of petroleum-based resources, the synthesis of new biobased compounds for the polymer industry has become a prominent and timely topic. P-menthane-1,8-diamine (PMDA) is a readily available compound synthesized from turpentine, a cheap mixture of natural compounds isolated from pine trees. PMDA has been extensively used for its biological activities, but it can also serve as a source of valuable monomers for the polymer industry.

View Article and Find Full Text PDF

Self-stratification of model blends of colloidal spheres has recently been demonstrated as a method to form multifunctional coatings in a single pass. However, practical coating formulations are complex fluids with upward of 15 components. Here, we investigate the influence of three different rheology modifiers (RMs) on the stratification of a 10 wt % 7:3 w:w blend of 270 and 96 nm anionic latex particles that do not stratify without RM.

View Article and Find Full Text PDF

There is a growing interest surrounding morpholine-2,5-dione-based materials due to their impressive biocompatibility as well as their capacity to break down by hydrolytic and enzymatic pathways. In this study, the ring-opening (co)polymerization of leucine-derived 3S-(isobutyl)morpholine-2,5-dione (MD) and lactide (LA) was performed via ball-milling using a catalytic system composed of 1,8-diazabicyclo[5.4.

View Article and Find Full Text PDF

We report herein a study on the alcohol-free, ring-opening polymerization of trimethylene carbonate (TMC) in THF, catalyzed by 1,5,7-triazabicyclo [4.4.0] ec-5-ene (TBD) with ratios n/n ranging between 1/20 and 1/400.

View Article and Find Full Text PDF

Although metathesis photoinduced catalysis is now well established, there is little development in thin film preparation using photochemically activated ring-opening metathesis polymerization (ROMP). Herein, a N-heterocyclic carbene (NHC) photogenerator (1,3-bis(mesityl)imidazolium tetraphenylborate) is combined with an inactive metathesis catalyst ([RuCl(-cymene)]) to generate under UV irradiation an active catalyst (-cymene)RuCl (NHC), that is capable of producing in a single step cross-linked copolymer films by ROMP of norbornene with dicyclopentadiene. The study shows that the photoinitiated catalytic system can be optimized by increasing the yield of photogenerated NHC through a sensitizer (2-isopropylthioxanthone), and by choosing [RuI(-cymene)] as precatalyst to provide a long-term photolatency.

View Article and Find Full Text PDF

Although N-heterocyclic carbenes (NHCs) have brought profound changes in catalytic organic synthesis, their generation generally requires an inert atmosphere and harsh conditions. To overcome these limitations, an air-stable NHC photogenerator has been developed involving two mild components: 1,3-bis(mesityl)imidazolium tetraphenylborate (IMesHBPh) and electronically excited isopropylthioxanthone (ITX). In this study, the photochemical mechanism is investigated via the accurate identification of the transient species and photoproducts.

View Article and Find Full Text PDF

In the search of smarter routes to control the conditions of N-heterocyclic carbene (NHCs) formation, a two-component air-stable NHC photogenerating system is reported. It relies on the irradiation at 365 nm of a mixture of 2-isopropylthioxanthone (ITX) with 1,3-bis(mesityl)imidazoli(ni)um tetraphenylborate. The photoinduced liberation of NHC is evidenced by reaction with a mesitoyl radical to form an NHC-radical adduct detectable by electron spin resonance spectroscopy.

View Article and Find Full Text PDF

We report a method to generate the N-heterocyclic carbene (NHC) 1,3-dimesitylimidazol-2-ylidene (IMes) under UV-irradiation at 365 nm to characterize IMes and determine the corresponding photochemical mechanism. Then, we describe a protocol to perform ring-opening metathesis polymerization (ROMP) in solution and in miniemulsion using this NHC-photogenerating system. To photogenerate IMes, a system comprising 2-isopropylthioxanthone (ITX) as the sensitizer and 1,3-dimesitylimidazolium tetraphenylborate (IMesHBPh4) as the protected form of NHC is employed.

View Article and Find Full Text PDF

Photoinitiated ring-opening polymerization of l-lactide (L-LA) using a photobase generator (PBG) able to release 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) is reported.

View Article and Find Full Text PDF

1,3-Bis(mesityl)imidazolium tetraphenylborate (IMesH BPh ) can be synthesized in one step by anion metathesis between the corresponding imidazolium chloride and sodium tetraphenylborate. In the presence of 2-isopropylthioxanthone (sensitizer), an IMes N-heterocyclic carbene (NHC) ligand can be photogenerated under irradiation at 365 nm through coupled electron/proton transfer reactions. By combining this tandem NHC photogenerator system with metathesis inactive [RuCl (p-cymene)] precatalyst, the highly active RuCl (p-cymene)(IMes) complex can be formed in situ, enabling a complete ring-opening metathesis polymerization (ROMP) of norbornene in the matter of minutes at room temperature.

View Article and Find Full Text PDF

The chemistry of N-heterocyclic carbenes (NHCs) has witnessed tremendous development in the past two decades: NHCs have not only become versatile ligands for transition metals, but have also emerged as powerful organic catalysts in molecular chemistry and, more recently, in metal-free polymer synthesis. To understand the success of NHCs, this review first presents the electronic properties of NHCs, their main synthetic methods, their handling, and their reactivity. Their ability to activate key functional groups (e.

View Article and Find Full Text PDF

CO stimuli-responsive polystyrene latexes having a solids content of 27% were prepared in a surfactant-free emulsion polymerization (SFEP) under a CO atmosphere, employing only commercially available chemical compounds: styrene, the initiator VA-061, and 0.54 mol % of the CO-switchable comonomer DEAEMA. The resulting polymer particles are 230-300 nm in diameter and are monodisperse (PDI ≤ 0.

View Article and Find Full Text PDF

Anion metathesis of imidazol(in)ium chlorides with KHCO(3) afforded an easy one step access to air stable imidazol(in)ium hydrogen carbonates, denoted as [NHC(H)][HCO(3)]. In solution, these compounds were found to be in equilibrium with their corresponding imidazol(in)ium carboxylates, referred to as N-heterocyclic carbene (NHC)-CO(2) adducts. The [NHC(H)][HCO(3)] salts were next shown to behave as masked NHCs, allowing for the NHC moiety to be readily transferred to both organic and organometallic substrates, without the need for dry and oxygen-free conditions.

View Article and Find Full Text PDF