Publications by authors named "Julien Malherbe"

Mixotrophic microorganisms are able to use organic carbon as well as inorganic carbon sources and thus, play an essential role in the biogeochemical carbon cycle. In aquatic ecosystems, the alteration of carbon dioxide (CO ) fixation by toxic metals such as cadmium - classified as a priority pollutant - could contribute to the unbalance of the carbon cycle. In consequence, the investigation of cadmium impact on carbon assimilation in mixotrophic microorganisms is of high interest.

View Article and Find Full Text PDF

Nanospheres of lead (Pb) have recently been identified in zircon (ZrSiO) with the potential to compromise the veracity of U-Pb age determinations. The key assumption that the determined age is robust against the effects of Pb mobility, as long as Pb is not lost from the zircon during subsequent geological events, is now in question. To determine the effect of nanosphere formation on age determination, and whether analysis of nanospheres can yield additional information about the timing of both zircon growth and nanosphere formation, zircons from the Napier Complex in Enderby Land, East Antarctica, were investigated by high-spatial resolution NanoSIMS (Secondary Ion Mass Spectrometry) mapping.

View Article and Find Full Text PDF

We have examined the potential of discriminant inorganic constituents (trace-, ultra-trace elements and Sr isotope ratios) to assess the origin of world famous brands of European dry-cured hams. The variation of the multielemental composition with principal component analysis allowed to discriminate the origin of Bayonne hams. Determined ratio Sr/Sr was recognized as a strong additional distinctive parameter.

View Article and Find Full Text PDF

An important application field of secondary ion mass spectrometry at the nanometer scale (NanoSIMS) is the detection of chemical elements and, in particular, metals at the subcellular level in biological samples. The detection of many trace metals requires an oxygen primary ion source to allow the generation of positive secondary ions with high yield in the NanoSIMS. The duoplasmatron oxygen source is commonly used in this ion microprobe but cannot achieve the same quality of images as the cesium primary ion source used to produce negative secondary ions (C(-), CN(-), S(-), P(-)) due to a larger primary ion beam size.

View Article and Find Full Text PDF

Chemical bioimaging offers an important contribution to the investigation of biochemical functions, biosorption and bioaccumulation processes of trace elements via their localization at the cellular and even at the subcellular level. This paper describes the combined use of high contrast transmission electron microscopy (HC-TEM), energy dispersive X-ray spectroscopy (X-EDS), and nano secondary ion mass spectrometry (NanoSIMS) applied to a model organism, the unicellular green algae Chlamydomonas reinhardtii. HC-TEM providing a lateral resolution of 1nm was used for imaging the ultrastructure of algae cells which have diameters of 5-10μm.

View Article and Find Full Text PDF

We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required.

View Article and Find Full Text PDF

In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios.

View Article and Find Full Text PDF

Quantitative analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) remains challenging primarily due to the lack of appropriate reference materials available for the wide variety of samples of interest and to elemental fractionation effects. Isotopic dilution mass spectrometry (IDMS) is becoming the methodology of choice to address these issues because the different isotopes of an element represent near-perfect internal standards. In this work, we investigated the lithium borate fusion of powdered solid samples, including soils, sediments, rock mine waste and a meteorite, as a strategy to homogenously distribute, i.

View Article and Find Full Text PDF

A method has been developed for the fast and easy determination of Pb, Sr, Ba, Ni, Cu, and Zn, which are of geological and environmental interest, in solid samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) using a spinning sample platform. The platform, containing a sample and a standard, is spun during the ablation, allowing the quasi-simultaneous ablation of both materials. The aerosols resulting from the ablation of sample and standard were mixed in the ablation cell allowing quantification of analytes by standard additions.

View Article and Find Full Text PDF

The determination of Zn, Sr, Ba, and Pb in solid samples has been achieved by laser ablation inductively coupled plasma isotope dilution mass spectrometry using a spinning platform. The fast rotation of a sample and an isotopically enriched spike placed close together on a sample holder allowed performing the isotope dilution directly inside the ablation cell. The proportion of spike versus sample of the aerosol mixture obtained has been determined online by isotope dilution in order to correct for differences in ablation rate although both materials were placed on the axis of rotation of the motor.

View Article and Find Full Text PDF

We present here a new environmental measurement method for the rapid extraction and accurate quantification of Cr(VI) in solid samples. The quantitative extraction of Cr(VI) is achieved in 10 minutes by means of focused microwave assisted extraction using 50 mmol/L Ethylendiamintetraacetic acid (EDTA) at pH 10 as extractant. In addition, it enables the separation of Cr species by anion exchange chromatography using a mobile phase which is a 1:10 dilution of the extracting solution.

View Article and Find Full Text PDF

Hexavalent chromium (Cr(VI)) occurrence in soils is generally determined using an extraction step to transfer it to the liquid phase where it is more easily detected and quantified. In this work, the performance of the most common extraction procedure (EPA Method 3060A) using NaOH-Na(2)CO(3) solutions is evaluated using X-ray absorption near edge structure spectroscopy (XANES), which enables the quantification of Cr(VI) directly in the solid state. Results obtained with both methods were compared for three solid samples with different matrices: a soil containing chromite ore processing residue (COPR), a loamy soil, and a paint sludge.

View Article and Find Full Text PDF

The effect of radiofrequency glow-discharge sputtering on the sample surface in terms of modifications in the surface morphology were investigated in this work by using atomic force microscopy (AFM) and rugosimetry measurements. The influence of GD operating parameters (e.g.

View Article and Find Full Text PDF