Dark matter (DM) annihilation in our Galaxy may produce a linearly polarized synchrotron signal. We use, for the first time, synchrotron polarization to constrain the DM annihilation cross section by comparing theoretical predictions with the latest polarization maps obtained by the Planck satellite collaboration. We find that synchrotron polarization is typically more constraining than synchrotron intensity by about 1 order of magnitude, independently of uncertainties in the modeling of electron and positron propagation, or of the Galactic magnetic field.
View Article and Find Full Text PDFPrevious fits of sterile neutrino dark matter (DM) models to cosmological data ruled out masses smaller than approximately 8 keV, assuming a production mechanism that is not the best motivated from a particle physics point of view. Here we focus on a realistic extension of the standard model with three sterile neutrinos, consistent with neutrino oscillation data and baryogenesis, with the lightest sterile neutrino being the DM particle. We show that for each mass >or= 2 keV there exists at least one model accounting for 100% of DM and consistent with Lyman-alpha and other cosmological, astrophysical, and particle physics data.
View Article and Find Full Text PDFWe present constraints on the mass of warm dark matter (WDM) particles from a combined analysis of the matter power spectrum inferred from the Sloan Digital Sky Survey Lyman-alpha flux power spectrum at 2.2
We obtain very stringent bounds on the possible cold dark matter, baryon, and neutrino isocurvature contributions to the primordial fluctuations in the Universe, using recent cosmic microwave background and large scale structure data. Neglecting the possible effects of spatial curvature, tensor perturbations, and reionization, we perform a Bayesian likelihood analysis with nine free parameters, and find that the amplitude of the isocurvature component cannot be larger than about 31% for the cold dark matter mode, 91% for the baryon mode, 76% for the neutrino density mode, and 60% for the neutrino velocity mode, at 2sigma, for uncorrelated models. For correlated adiabatic and isocurvature components, the fraction could be slightly larger.
View Article and Find Full Text PDF