Publications by authors named "Julien Lacroux"

Article Synopsis
  • Dark fermentation (DF) generates biohydrogen and volatile fatty acids (VFAs) but struggles with slow butyrate consumption.
  • This study explores using artificial microalgae-bacteria consortia to enhance butyrate removal rates, demonstrating that certain microalgae growth isn't hindered by bacteria but actually benefits from their presence.
  • Findings suggest that coupling DF effluents with microalgal cultivation can improve substrate removal and promote the production of valuable biomass.
View Article and Find Full Text PDF

The implementation of a sustainable bio-based economy is considered a top priority today. There is no doubt about the necessity to produce renewable bioenergy and bio-sourced chemicals to replace fossil-derived compounds. Under this scenario, strong efforts have been devoted to efficiently use organic waste as feedstock for biohydrogen production via dark fermentation.

View Article and Find Full Text PDF

Volatile fatty acids found in effluents of the dark fermentation of biowastes can be used for mixotrophic growth of microalgae, improving productivity and reducing the cost of the feedstock. Microalgae can use the acetate in the effluents very well, but butyrate is poorly assimilated and can inhibit growth above 1 gC.L.

View Article and Find Full Text PDF

Microalgae can be cultivated on waste dark fermentation effluents containing volatile fatty acids (VFA) such as acetate or butyrate. These VFA can however inhibit microalgae growth at concentrations above 0.5-1 g.

View Article and Find Full Text PDF