Background: Coronary computed tomography angiography (CCTA) has emerged as a reliable noninvasive modality to assess coronary artery stenosis and high-risk plaque (HRP). However, CCTA assessment of stenosis and HRP is time-consuming and requires specialized training, limiting its clinical translation.
Objectives: The aim of this study is to develop and validate a fully automated deep learning system capable of characterizing stenosis severity and HRP on CCTA.
Eur Heart J Imaging Methods Pract
September 2023
Objectives: Coronary artery calcium (CAC) scores derived from computed tomography (CT) scans are used for cardiovascular risk stratification. Artificial intelligence (AI) can assist in CAC quantification and potentially reduce the time required for human analysis. This study aimed to develop and evaluate a fully automated model that identifies and quantifies CAC.
View Article and Find Full Text PDF