Surface-based assays are increasingly being used in biology and medicine, which in turn demand increasing quantitation and reproducibility. This translates into more stringent requirements on the patterning of biological entities on surfaces (also referred to as biopatterning). This tutorial focuses on mass transport in the context of existing and emerging biopatterning technologies.
View Article and Find Full Text PDFWe present a new concept, termed tissue lithography (TL), and its implementation which enables retrospective studies on formalin-fixed paraffin-embedded tissue sections. Tissue lithography uses a microfluidic probe to remove microscale areas of the paraffin layer on formalin-fixed paraffin-embedded biopsy samples. Current practices in sample utilization for research and diagnostics require complete deparaffinization of the sample prior to molecular testing.
View Article and Find Full Text PDFThe microfluidic probe (MFP) facilitates performing local chemistry on biological substrates by confining nanoliter volumes of liquids. Using one particular implementation of the MFP, the hierarchical hydrodynamic flow confinement (hHFC), multiple liquids are simultaneously brought in contact with a substrate. Local chemical action and liquid shaping using the hHFC, is exploited to create cell patterns by locally lysing and removing cells.
View Article and Find Full Text PDFWe present a new methodology for efficient and high-quality patterning of biological reagents for surface-based biological assays. The method relies on hydrodynamically confined nanoliter volumes of reagents to interact with the substrate at the micrometer-length scale. We study the interplay between diffusion, advection, and surface chemistry and present the design of a noncontact scanning microfluidic device to efficiently present reagents on surfaces.
View Article and Find Full Text PDF