Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction.
View Article and Find Full Text PDFIn living organisms, calcium carbonate biomineralization combines complex bio-controlled physical and chemical processes to produce crystalline hierarchical hard tissues (usually calcite or aragonite) typically from an amorphous precursor phase. Understanding the nature of the successive transient amorphous phases potentially involved in the amorphous-to-crystalline transition requires characterization tools, which are able to provide a spatial and spectroscopic analysis of the biomineral structure. In this work, we present a highly sensitive coherent Raman microscopy approach, which allows one to image molecular bond concentrations in post mortem shells and living animals, by exploiting the vibrational signature of the different carbonates compounds.
View Article and Find Full Text PDFBiomineralization integrates complex physical and chemical processes bio-controlled by the living organisms through ionic concentration regulation and organic molecules production. It allows tuning the structural, optical and mechanical properties of hard tissues during ambient-condition crystallisation, motivating a deeper understanding of the underlying processes. By combining state-of-the-art optical and X-ray microscopy methods, we investigated early-mineralized calcareous units from two bivalve species, Pinctada margaritifera and Pinna nobilis, revealing chemical and crystallographic structural insights.
View Article and Find Full Text PDFThe shell color of the Mollusca has attracted naturalists and collectors for hundreds of years, while the molecular pathways regulating pigment production and the pigments themselves remain poorly described. In this study, our aim was to identify the main pigments and their molecular pathways in the pearl oyster -the species displaying the broadest range of colors. Three inner shell colors were investigated-red, yellow, and green.
View Article and Find Full Text PDFLong-range orientational correlations in liquids have received recent renewed interest, in particular for the neat water case. These long-range orientational correlations, exceeding several tens of nanometers, originate from the presence of the strong permanent water dipolar moment. However, the exact dependence with the dipolar moment and the role of other local forces like steric hindrance has never been addressed.
View Article and Find Full Text PDFStimulated Raman Scattering (SRS) imaging can be hampered by non-resonant parasitic signals that lead to imaging artifacts and eventually overwhelm the Raman signal of interest. Stimulated Raman gain opposite loss detection (SRGOLD) is a three-beam excitation scheme capable of suppressing this nonlinear background while enhancing the resonant Raman signal. We present here a compact electro-optical system for SRGOLD excitation which conveniently exploits the idler beam generated by an optical parametric oscillator (OPO).
View Article and Find Full Text PDFWe report the long-range orientational organization of water using polarization-resolved second harmonic scattering operated in a right-angle configuration. A transition is observed between the neat water orientational organization involving an azimuthal molecular orientation distribution towards a radial molecular orientation distribution when salt is added. These two orientational phases are quantitatively described using a molecular model of the second harmonic scattering response.
View Article and Find Full Text PDFMyelin around axons is currently widely studied by structural analyses and large-scale imaging techniques, with the goal to decipher its critical role in neuronal protection. Although there is strong evidence that in myelin, lipid composition, and lipid membrane morphology are affected during the progression of neurodegenerative diseases, there is no quantitative method yet to report its ultrastructure in tissues at both molecular and macroscopic levels, in conditions potentially compatible with in vivo observations. In this work, we study and quantify the molecular order of lipids in myelin at subdiffraction scales, using label-free polarization-resolved coherent anti-Stokes Raman, which exploits coherent anti-Stokes Raman sensitivity to coupling between light polarization and oriented molecular vibrational bonds.
View Article and Find Full Text PDFNonlinear optical methods, such as coherent anti-Stokes Raman scattering and stimulated Raman scattering, are able to perform label-free imaging, with chemical bonds specificity. Here we demonstrate that the use of circularly polarized light allows to retrieve not only the chemical nature but also the symmetry of the probed sample, in a single measurement. Our symmetry-resolved scheme offers simple access to the local organization of vibrational bonds and as a result provides enhanced image contrast for anisotropic samples, as well as an improved chemical selectivity.
View Article and Find Full Text PDFWe investigate how to extract information on the orientational order of molecular bonds in biological samples from polarized coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy. Experimentally, the mean orientation of the molecular angular distribution, as well as its second and fourth orders of symmetry, are estimated by monitoring intensity signals under a varying incident polarization. We provide a generic method of analysis of polarized signals in both CARS and SRS contrasts, and apply it to imaging of lipid bonds' orientational order in multilamellar vesicles.
View Article and Find Full Text PDFThe orientational distribution of fluorophores is an important reporter of the structure and function of their molecular environment. Although this distribution affects the fluorescence signal under polarized-light excitation, its retrieval is limited to a small number of parameters. Because of this limitation, the need for a geometrical model (cone, Gaussian, etc.
View Article and Find Full Text PDFWe experimentally demonstrate that some peptides and proteins lend themselves to an elementary analysis where their first hyperpolarizability can be decomposed into the coherent superposition of the first hyperpolarizability of their elementary units. We then show that those elementary units can be associated with the amino acids themselves in the case of nonaromatic amino acids and nonresonant second harmonic generation. As a case study, this work investigates the experimentally determined first hyperpolarizability of rat tail Type I collagen and compares it to that of the shorter peptide [(PPG)10]3, where P and G are the one-letter code for Proline and Glycine, respectively, and that of the triamino acid peptides PPG and GGG.
View Article and Find Full Text PDFAmyloid fibrils are protein misfolding structures that involve a β-sheet structure and are associated with the pathologies of various neurodegenerative diseases. Here we show that Thioflavine-T and Congo Red, two major dyes used to image fibrils by fluorescence assays, can provide deep structural information when probed by means of polarization-resolved fluorescence microscopy. Unlike fluorescence anisotropy or fluorescence detected linear dichroism imaging, this technique allows to retrieve simultaneously both mean orientation and orientation dispersion of the dye, used here as a reporter of the fibril structure.
View Article and Find Full Text PDFPolarization resolved second harmonic generation (PSHG) is developed to study, at the microscopic scale, the impact of aging on the structure of type I collagen fibrils in two-dimensional coatings. A ribose-glycated collagen is also used to mimic tissue glycation usually described as an indicator of aging. PSHG images are analyzed using a generic approach of the molecular disorder information in collagen fibrils, revealing significant changes upon aging, with a direct correlation between molecular disorder and fibril diameters.
View Article and Find Full Text PDFWe analyze the increase in precision of parameters estimation for polarization-resolved second-harmonic generation imaging microscopy when two intensities are measured with two orthogonal analyzers. The analysis is performed for measuring anisotropy parameters and molecule orientation for samples with cylindrical symmetry in the presence of photon noise with Poisson statistics. The improvement in comparison to global intensity measurement (i.
View Article and Find Full Text PDFTwo different conformational isoforms or amyloid strains of insulin with different cytotoxic capacity have been described previously. Herein these filamentous and fibrillar amyloid states of insulin were investigated using biophysical and spectroscopic techniques in combination with luminescent conjugated oligothiophenes (LCO). This new class of fluorescent probes has a well defined molecular structure with a distinct number of thiophene units that can adopt different dihedral angles depending on its binding site to an amyloid structure.
View Article and Find Full Text PDFWe report the three-dimensional mapping of 150 nm gold metallic nanoparticles dispersed in a homogeneous transparent polyacrylamide matrix using second-harmonic generation. We demonstrate that the position of single nanoparticles can be well defined using only one incident fundamental beam and the harmonic photon detection performed at right angle. The fundamental laser beam properties are determined using its spatial autocorrelation function and used to prove that single nanoparticles are observed.
View Article and Find Full Text PDFA series of asymmetrically substituted free-base di- and tetra-phenylporphyrins and the associated Zn-phenylporphyrins were synthesized and studied by X-ray diffraction, NMR, infrared, electronic absorption spectra, as well as fluorescence emission spectroscopy, along with theoretical simulations of the electronic and vibration structures. The synthesis selectively afforded trans-A₂B₂ porphyrins, without scrambling observed, where the AA and BB were taken as donor- and acceptor-substituted phenyl groups. The combined results point to similar properties to symmetrically substituted porphyrins reported in the literature.
View Article and Find Full Text PDFWe report the optical second harmonic generation from individual 150 nm diameter gold nanoparticles dispersed in gelatin. The quadratic hyperpolarizability of the particles is determined and the input polarization dependence of the second harmonic intensity obtained. These results are found in excellent agreement with ensemble measurements and finite element simulations.
View Article and Find Full Text PDFWe performed Hyper-Rayleigh Scattering (HRS) experiments to measure the second-order nonlinear optical response of the collagen triple helix and determine the physical origin of second harmonic signals observed in collagenous tissues. HRS experiments yielded a second-order hyperpolarizability of 1.25 x 10(-27) esu for rat-tail type I collagen, a surprisingly large value considering that collagen presents no strong harmonophore in its amino acid sequence.
View Article and Find Full Text PDF