Publications by authors named "Julien Deloffre"

Anthropogenic impacts on rivers have increased significantly over the past ~150 years, particularly at the beginning of the industrial revolution. Among other signs, this impact is manifested through the addition of trace metals and metalloid elements to rivers. The Eure River watershed in France covers an area of 6017 km and is a major tributary of the Seine estuary.

View Article and Find Full Text PDF

Coastal urbanisation exposes surrounding estuarine environments to urban-related contaminants such as polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and pesticide mixtures. Hydrophobic contaminants can adsorb on estuarine sediments. They can subsequently be released on a massive scale in the aquatic environment due to artificial or natural phenomena (e.

View Article and Find Full Text PDF

Sediment cores were collected at the outlet of the highly anthropogenized catchment of the Seine River at two contrasting sites: a flood plain of the lower Seine River and a quasi-permanently submerged harbour basin (or wet dock) in the upper tidal estuary. Analyses of artificial radionuclides ((137)Cs and plutonium isotopes), coupled with hydrological and bathymetric data, lead to a precise dating of the sediment cores collected at the two sites. (137)Cs signals originating from global fallout (early 1960s) and from the Chernobyl accident (1986) are identified, but at different levels due to the incomplete nature or variable continuity of the records.

View Article and Find Full Text PDF

We investigated the diversity and activity of sulfate-reducing prokaryotes (SRP) in a 3.5-m sediment core taken from a heavy metal-contaminated site in the Medway Estuary, UK. The abundance of SRPs was quantified by qPCR of the dissimilatory sulfite reductase gene β-subunit (dsrB) and taking into account DNA extraction efficiency.

View Article and Find Full Text PDF

The Seine estuary (France) is one of the world's macrotidal systems that is most contaminated with heavy metals. To study the mercury-resistant bacterial community in such an environment, we have developed a molecular tool, based on competitive PCR, enabling the quantification of Gram-negative merA gene abundance. The occurrence of the Gram-negative merA gene in relation with the topology (erosion/deposit periods) and the mercury contamination of three contrasted mudflats was investigated through a multidisciplinary approach and compared with a non-anthropized site (Authie, France).

View Article and Find Full Text PDF

The scientific teams from the interdisciplinary Seine-Aval (SA) research program and the SA's operational pole, GIPSA (Groupement d'Intérêt Public Seine-Aval) have worked together to create a report card designed to help the Estuary Council (Conseil de l'Estuaire) revitalize its original functions: maintaining functional links between the various estuarine ecosystems, comprehending and managing the estuary's natural habitats and biological populations, and monitoring and improving the physical-chemical quality of the estuarine waters. The report card will be able to synthesize the information obtained from several system performance variables and available operational indicators. This approach, intended to guide the estuary managers, is the oeuvre of several scientific teams; it is particularly important in the context of the Water Framework Directive because it facilitates the elaboration of a group of relevant indicators, which can then be used as operational tools.

View Article and Find Full Text PDF

Over a three-year period, quantification of faecal indicators and the molecular detection of Escherichia coli and Salmonella were monitored in sediments from three contrasting mudflats of the Seine estuary (France). The elevation of the mudflat surface was monitored concurrently using a high-resolution altimeter. During the period of the study, estuarine mudflats were areas of deposition for faecal-indicator bacteria and were mainly controlled by sedimentary processes.

View Article and Find Full Text PDF

A seasonal field study was carried out in the Seine estuary to determine the chemistry of sediment porewaters using the 'peeper' technique and changes in the elevation of the mudflats using the 'Altus' technique. This approach allowed us to evaluate the release of nutrients and to link these releases to the sediment hydrodynamics. Our results show that nutrient and organic matter cycling in a Seine estuary mudflat exhibits a seasonal behaviour, which is mainly influenced by variations in hydrodynamics.

View Article and Find Full Text PDF