Traumatic brain injury (TBI) is one of the leading causes of death worldwide. There are currently no effective treatments for TBI, and trauma survivors suffer from a variety of long-lasting health consequences. With nutritional support recently emerging as a vital step in improving TBI patients' outcomes, we sought to evaluate the potential therapeutic benefits of nutritional supplements derived from bovine thymus gland, which can deliver a variety of nutrients and bioactive molecules.
View Article and Find Full Text PDFHere an improved carrot reference genome and resequencing of 630 carrot accessions were used to investigate carrot domestication and improvement. The study demonstrated that carrot was domesticated during the Early Middle Ages in the region spanning western Asia to central Asia, and orange carrot was selected during the Renaissance period, probably in western Europe. A progressive reduction of genetic diversity accompanied this process.
View Article and Find Full Text PDFDcMYB11, an R2R3 MYB gene associated with petiole anthocyanin pigmentation in carrot, was functionally characterized. A putative enhancer sequence is able to increase DcMYB11 activity. The accumulation of anthocyanin pigments can exhibit different patterns across plant tissues and crop varieties.
View Article and Find Full Text PDFPineapple ( (L.) Merr.) is the second most important tropical fruit crop globally, and 'MD2' is the most important cultivated variety.
View Article and Find Full Text PDFPurple or black carrots ( ssp. var. Alef) are characterized by their dark purple- to black-colored roots, owing their appearance to high anthocyanin concentrations.
View Article and Find Full Text PDFAnthocyanins are natural health promoting pigments that can be produced in large quantities in some purple carrot cultivars. Decoration patterns of anthocyanins, such as acylation, can greatly influence their stability and biological properties and use in the food industry as nutraceuticals and natural colorants. Despite recent advances made toward understanding the genetic control of anthocyanin accumulation in purple carrot, the genetic mechanism controlling acylation of anthocyanin in carrot root have not been studied yet.
View Article and Find Full Text PDFPhytohormones are signal molecules produced within the plant that control its growth and development through the regulation of gene expression. Interaction between different phytohormone pathways is essential in coordinating tissue outgrowth in response to environmental changes, such as the adaptation of root development to water deficit or the initiation of seed germination during imbibition. Recently, microRNAs (miRNAs) have emerged as key regulators of phytohormone response pathways in planta by affecting their metabolism, distribution, and perception.
View Article and Find Full Text PDFBackground: The transitions from juvenile to adult and adult to reproductive phases of growth are important stages in the life cycle of plants. The regulators of these transitions include miRNAs, in particular miR156 and miR172 which are part of a regulatory module conserved across the angiosperms. In Arabidopsis miR171 represses differentiation of axillary meristems by repressing expression of SCARECROW-LIKE(SCL) transcription factors, however the role of miR171 has not been examined in other plants.
View Article and Find Full Text PDFBackground: During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and their targets.
Results: Our analysis identified 84 known miRNAs and 7 new miRNAs together with 96 putative miRNA target genes regulated through a slicing mechanism in grain tissues during the first 15 days post anthesis.
RNA-dependent RNA polymerases (RDRPs) are encoded by RNA viruses as well as eukaryotic organisms such as plants. The function of these cellular RDRPs has been associated with the synthesis of short interfering RNAs (siRNAs), which are essential regulators of genomic integrity and plant viral defense. The multiple gene copies, and functional diversities, of the plant RDRPs raise the question of whether their intrinsic properties differ.
View Article and Find Full Text PDFIn Arabidopsis, genetic evidence demonstrates that RNA-dependent RNA polymerase 6 (RDR6) plays a fundamental role in at least four RNA silencing pathways whose functions range from defense against transgenes or viruses to endogene regulation in development and in stress responses. Despite its critical role in RNA silencing, the biochemical activities of RDR6 have yet to be characterized. In this study, we transiently expressed Arabidopsis RDR6 in Nicotiana benthamiana and investigated the biochemical activities of immunopurified RDR6 in vitro.
View Article and Find Full Text PDFEmbryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin (GA) hormone biosynthesis is regulated by LEC2 and FUS3 pathways. The level of bioactive GAs is increased in immature seeds of lec2 and fus3 mutants relative to wild-type level.
View Article and Find Full Text PDFTrichomes of Arabidopsis are single-celled epidermal hair that are a useful model for studying plant cell fate determination. Trichome initiation requires the activity of the GLABROUS1 (GL1) gene whose expression in epidermal and trichome cells is dependent on the presence of a 3'-cis-regulatory element. Using a one-hybrid screen, we have isolated a cDNA, which encodes for a protein, GL1 enhancer binding protein (GeBP), that binds this regulatory element in yeast and in vitro.
View Article and Find Full Text PDF