Microbial asparaginase is an essential component of chemotherapy for the treatment of childhood acute lymphoblastic leukemia (cALL). Silent hypersensitivity reactions to this microbial enzyme need to be monitored accurately during treatment to avoid adverse effects of the drug and its silent inactivation. Here, we present a dual-response anti-asparaginase sensor that combines indirect SPR and fluorescence on a single chip to perform ELISA-type immunosensing, and correlate measurements with classical ELISA.
View Article and Find Full Text PDFThe clinical success of l-asparaginase II (EcAII) as a front line chemotherapeutic agent for acute lymphoblastic leukemia (ALL) is often compromised because of its silent inactivation by neutralizing antibodies. Timely detection of silent immune response can rely on immobilizing EcAII, to capture and detect anti-EcAII antibodies. Having recently reported the use of a portable surface plasmon resonance (SPR) sensing device to detect anti-EcAII antibodies in undiluted serum from children undergoing therapy for ALL (Aubé et al.
View Article and Find Full Text PDFIdentification and quantification of proteins in imaging of biological samples are a challenge in today's science. Here, we demonstrate a novel surface plasmon resonance imaging-matrix assisted laser desorption ionization imaging mass spectrometry (SPRi-MALDI IMS) coupled technique competent for the acquisition of multiparametric information by creating a tissue section imprint on an SPRi sensor surface. Correlated images were acquired in SPRi and in MALDI IMS for abundant proteins from a single mouse kidney tissue.
View Article and Find Full Text PDFChemical measurements are rarely performed in crude blood due to the poor performance of sensors and devices exposed to biofluids. In particular, biosensors have been severely limited for detection in whole blood due to surface fouling from proteins, the interaction of cells with the sensor surface and potential optical interference when considering optical methods of analysis. To solve this problem, a dialysis chamber was introduced to a surface plasmon resonance (SPR) biosensor to create a diffusion gate for large molecules.
View Article and Find Full Text PDFCharacterization of protein adsorption to surfaces has implications from biosensing to protective biocoatings. While research studies have principally focused on determining the magnitude of protein adsorption to surfaces, the proteins involved in the process remains only broadly identified and has not been investigated on several surfaces. To further elucidate the nonspecific adsorption process of serum to surfaces, surface plasmon resonance (SPR) and matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) were used in combination to obtain quantitative and qualitative information about the process of protein adsorption to surfaces.
View Article and Find Full Text PDFIntegrating a SERS immunoassay on a plasmonic "patch clamp" nanopipette enabled nanobiosensing for the detection of IgG. A SERS response was obtained using a sandwich assay benefiting from plasmon coupling between a capture Au nanoparticle (AuNP) on a nanotip and a second AuNP modified with a Raman active reporter and an antibody selective for IgG. The impact of nanoparticle shape and surface coverage was investigated alongside the choice of Raman active reporter, deposition pH, and plasmonic coupling, in an attempt to fully understand the plasmonic properties of nanopipettes and to optimize the nanobiosensor for the detection of IgG.
View Article and Find Full Text PDFNon-specific adsorption of the molecular components of biofluids is ubiquitous in the area of biosensing technologies, severely limiting the use of biosensors in real-world applications. The surface chemistries developed to prevent non-specific adsorption of crude serum are not necessarily suited for sensing in other biosamples. In particular, the diagnostic potential of differential expression of proteins in tissues makes cell lysate attractive for disease diagnostics using solid biopsies.
View Article and Find Full Text PDFIonic liquid self-assembled monolayers (SAM) were designed and applied for binding streptavidin, promoting affinity biosensing and enzyme activity on gold surfaces of sensors. The synthesis of 1-((+)-biotin)pentanamido)propyl)-3-(12-mercaptododecyl)-imidazolium bromide, a biotinylated ionic liquid (IL-biotin), which self-assembles on gold film, afforded streptavidin sensing with surface plasmon resonance (SPR). The IL-biotin-SAM efficiently formed a full streptavidin monolayer.
View Article and Find Full Text PDFSilver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) biosensing has matured into a valuable analytical technique for measurements related to biomolecules, environmental contaminants, and the food industry. Contemporary SPR instruments are mainly suitable for laboratory-based measurements. However, several point-of-measurement applications would benefit from simple, small, portable and inexpensive sensors to assess the health condition of a patient, potential environmental contamination, or food safety issues.
View Article and Find Full Text PDFA simple anion metathesis in diluted aqueous carbonate at room temperature affords 1-(12-mercaptododecyl)-3-methyl-imidazolium carbonate (MDMI-HCO(3)) from MDMI salts self-assembled on gold films and nanoparticles. The properties of MDMI-SAM differ from MDMI in solution, for which the anion exchange reaction does not proceed.
View Article and Find Full Text PDF