Increasing concerns about plant protection products in surface waters have highlighted the importance of pesticide monitoring and modelling, both nowadays integral components of the pesticide registration process. The Rice Water Quality (RICEWQ) model predicts the fate and transport of pesticides under various paddy environmental conditions. The model has been used widely for regulatory purpose in the U.
View Article and Find Full Text PDFDroughts that exceed the magnitudes of historical variation ranges could occur increasingly frequently under future climate conditions. However, the time of the emergence of unprecedented drought conditions under climate change has rarely been examined. Here, using multimodel hydrological simulations, we investigate the changes in the frequency of hydrological drought (defined as abnormally low river discharge) under high and low greenhouse gas concentration scenarios and existing water resource management measures and estimate the time of the first emergence of unprecedented regional drought conditions centered on the low-flow season.
View Article and Find Full Text PDFClimate change and anthropogenic activities are affecting the hydrological conditions of rivers and may have altered nutrient and suspended sediments released into coastal seas. However, testing this hypothesis is difficult, confounded by the lack of observational data and the unavailability of globally accepted suspended sediment concentration (SSC) algorithms. Here, we analyzed the trends in SSC (2000-2020) at the mouths of 10 major Asian rivers using 10 available satellite-SSC algorithms.
View Article and Find Full Text PDFAnthropogenic climate change is expected to affect global river flow. Here, we analyze time series of low, mean, and high river flows from 7250 observatories around the world covering the years 1971 to 2010. We identify spatially complex trend patterns, where some regions are drying and others are wetting consistently across low, mean, and high flows.
View Article and Find Full Text PDFGlobally, flood risk is projected to increase in the future due to climate change and population growth. Here, we quantify the role of dams in flood mitigation, previously unaccounted for in global flood studies, by simulating the floodplain dynamics and flow regulation by dams. We show that, ignoring flow regulation by dams, the average number of people exposed to flooding below dams amount to 9.
View Article and Find Full Text PDFThe Pesticide Concentration in Paddy Field (PCPF-1) model has been successfully used to predict the fate and transport of granular pesticides applied to the paddy fields. However, it is not applicable for pesticides in foliar formulation while previous studies have reported that foliar application may increase the risks of rice pesticide contamination to the aquatic environment due to pesticide wash-off from rice foliage. In this study, we developed and added a foliar application module into the PCPF-1 model to improve its versatility regarding pesticide application methods.
View Article and Find Full Text PDFThe SPEC model (Predicted Environmental Concentrations in agricultural Soils) was developed and improved for the simulation of pesticide runoff. The model was applied to the Sakaecho upland bare soil field (Tokyo, Japan) to predict runoff water, sediment concentration in runoff water, pesticide concentrations in runoff water, and runoff sediment (clothianidin and imidacloprid) under artificial rainfall conditions. The results showed that the simulated time to first runoff agreed very well with the observed data.
View Article and Find Full Text PDFBackground: The Soil and Water Assessment Tool combined with Pesticide Concentration in Paddy Field (PCPF-1@SWAT) model was previously developed to simulate the fate and transport of rice pesticides in watersheds. However, the current model is deficient in characterizing the rice paddy area and is incompatible with the ArcSWAT2012 program. In this study, we modified the original PCPF-1@SWAT model to develop a new PCPF-1@SWAT2012 model to address the deficiency in the rice paddy area and utilizing the ArcSWAT2012 program.
View Article and Find Full Text PDFBackground: The PCPF-1 model was improved for forecasting the fate and transport of metabolites in addition to parent compounds in rice paddies. In the new PCPF-M model, metabolites are generated from the dissipation of pesticide applied in rice paddies through hydrolysis, photolysis and biological degradations. The methodology to parameterize the model was illustrated using two scenarios for which uncertainty and sensitivity analyses were also conducted.
View Article and Find Full Text PDFA simple and rapid gas chromatography with flame photometric detector (GC-FPD) determination method was developed to detect residue levels and investigate the dissipation pattern and safe use of fenitrothion in tomatoes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) using an ethyl acetate-based extraction, followed by a dispersive solid-phase extraction (d-SPE) with primary-secondary amine (PSA) and graphite carbon black (GCB) for clean up, was applied prior to GC-FPD analysis. The method showed satisfactory linearity, recovery and precision.
View Article and Find Full Text PDFA pesticide fate and transport model, SPEC, was developed for assessing Soil-PEC (Predicted Environmental Concentrations in agricultural soils) for pesticide residues in upland field environments. The SPEC model was validated for predicting the water content and concentrations of atrazine and metolachlor in 5-cm deep soil. Uncertainty and sensitivity analyses were used to evaluate the robustness of the model's predictions.
View Article and Find Full Text PDFTo estimate the potential effect of seasonal variation on the fate of herbicides in andisol soil, atrazine and metolachlor residues were investigated through the summer and winter seasons during 2013 and 2014 under field condition. The computed half-lives of atrazine and metolachlor in soil changed significantly through the two seasons of the trial. The half-lives were shorter in summer season with 16.
View Article and Find Full Text PDFBackground: The Pesticide Concentration in a Paddy Field model (PCPF-1) was modified by adding a root zone compartment to simulate nursery-box-applied (NB-applied) pesticide. The PCPF-NB model was validated for predicting the concentrations of NB-applied fipronil and imidacloprid in rice paddy fields using two treatment methods: before transplanting (BT) and at sowing (AS). Uncertainty and sensitivity analyses were used to evaluate the robustness of the concentrations predicted by the model.
View Article and Find Full Text PDFBull Environ Contam Toxicol
June 2015
Effects of rice husk gasification residues (RHGR) application on the fate of herbicides, butachlor and pyrazosulfuron-ethyl, in paddy water were investigated using micro paddy lysimeters (MPLs). The dissipation of both herbicides in paddy water was faster in the RHGR treated MPL than in the control MPL. The average concentrations of butachlor and pyrazosulfuron-ethyl in paddy water in the lysimeter treated with RHGR during 21 days were significantly reduced by 51% and 48%, respectively, as compared to those in the lysimeter without RHGR application.
View Article and Find Full Text PDFThe behavior of butachlor and pyrazosulfuron-ethyl in paddy water was investigated using micro paddy lysimeters with prescribed hydrological conditions under ambient temperature in spring and summer for simulating two rice crop seasons. Although they were not significantly different, the dissipation of both herbicides in paddy water in the summer experiment was faster than in the spring experiment. The half-lives (DT(50)) in paddy water for spring and summer experiments were 3.
View Article and Find Full Text PDF