We present a protocol to perform CRISPR/Cas9-mediated genome editing in the fission yeast Schizosaccharomyces pombe that does not require cloning and uses the fluoride exporter channel Fex1 as the selection marker. Transformation is typically carried out on the same day of PCR primer arrival and successfully edited strains are selected 5 days after transformation. We expect the adoption of this protocol to further accelerate the throughput of genome editing in S.
View Article and Find Full Text PDFMechanical forces are transmitted from the actin cytoskeleton to the membrane during clathrin-mediated endocytosis (CME) in the fission yeast Schizosaccharomyces pombe. End4p directly transmits force in CME by binding to both the membrane (through the AP180 N-terminal homology [ANTH] domain) and F-actin (through the talin-HIP1/R/Sla2p actin-tethering C-terminal homology [THATCH] domain). We show that 7 pN force is required for stable binding between THATCH and F-actin.
View Article and Find Full Text PDFDuring clathrin-mediated endocytosis, a patch of flat plasma membrane is internalized to form a vesicle. In mammalian cells, how the clathrin coat deforms the membrane into a vesicle remains unclear and two main hypotheses have been debated. The "constant area" hypothesis assumes that clathrin molecules initially form a flat lattice on the membrane and deform the membrane by changing its intrinsic curvature while keeping the coating area constant.
View Article and Find Full Text PDFProtocols for CRISPR-Cas9 editing have been implemented in most model organisms, including fission yeast, for which some improvements have also been later described. Here, we report an improvement to the CRISPR-Cas9 protocol in fission yeast, as we combine a cloning free gap-repair method with our previously described fluoride selection marker, which speeds up genome editing. We also report a wide variability of editing efficiencies at different loci along the genome, and we demonstrate that this variability cannot be explained by the location of the edited sequences in the genome.
View Article and Find Full Text PDFForces are central to countless cellular processes, yet in vivo force measurement at the molecular scale remains difficult if not impossible. During clathrin-mediated endocytosis, forces produced by the actin cytoskeleton are transmitted to the plasma membrane by a multiprotein coat for membrane deformation. However, the magnitudes of these forces remain unknown.
View Article and Find Full Text PDFMicroPubl Biol
September 2023
2A peptides are widely used for polycistronic gene expression from vectors. In contrast, the separation of endogenous genes via 2A peptides has been largely unexplored. We show that in fission yeast , the "cleaving" efficiency of the 2A peptide from ERBV-1 (Equine rhinitis B virus 1) range from ~70% to ~99% for End4 at different insertion sites.
View Article and Find Full Text PDFMicroPubl Biol
January 2022
Clathrin mediated endocytosis (CME) in the fission yeast critically depends on the connection between the lipid membrane and F-actin. The fission yeast endocytic protein End4 (homologous to Sla2 in budding yeast and HIP1R in human) contains a N-terminal domain that binds to PIP2 on the membrane, and a C-terminal THATCH domain that is postulated to be a binding partner of F-actin . Purified THATCH domain of the budding yeast Sla2, however, shows low affinity to F-actin .
View Article and Find Full Text PDFA comparative study (Sun , 2019) showed that the abundance of proteins at sites of endocytosis in fission and budding yeast is more similar in the two species than previously thought, yet membrane invaginations in fission yeast elongate twofold faster and are nearly twice as long as in budding yeast. Here we use a three-dimensional model of a motile endocytic invagination (Nickaeen , 2019) to investigate factors affecting elongation of the invaginations. We found that differences in turgor pressure in the two yeast species can largely explain the paradoxical differences observed experimentally in endocytic motility.
View Article and Find Full Text PDFDuring clathrin-mediated endocytosis (CME) in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms by which the actin machinery adapts to varying membrane tension remain unknown. In addition, how cells reduce their membrane tension when they are challenged by hypotonic shocks remains unclear.
View Article and Find Full Text PDFDuring clathrin-mediated endocytosis, a patch of flat plasma membrane is deformed into a vesicle. In walled cells, such as plants and fungi, the turgor pressure is high and pushes the membrane against the cell wall, thus hindering membrane internalization. In this work, we study how a patch of membrane is deformed against turgor pressure by force and by curvature-generating proteins.
View Article and Find Full Text PDFFluorescence microscopy has been one of the most discovery-rich methods in biology. In the digital age, the discipline is becoming increasingly quantitative. Virtually all biological laboratories have access to fluorescence microscopes, but abilities to quantify biomolecule copy numbers are limited by the complexity and sophistication associated with current quantification methods.
View Article and Find Full Text PDFTranscription by RNA polymerase II (RNAPII) is a dynamic process with frequent variations in the elongation rate. However, the physiological relevance of variations in RNAPII elongation kinetics has remained unclear. Here we show in yeast that a RNAPII mutant that reduces the transcription elongation rate causes widespread changes in alternative polyadenylation (APA).
View Article and Find Full Text PDFActin dynamics generate forces to deform the membrane and overcome the cell's high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time.
View Article and Find Full Text PDFBundles of actin filaments are central to a large variety of cellular structures such as filopodia, stress fibers, cytokinetic rings, and focal adhesions. The mechanical properties of these bundles are critical for proper force transmission and force bearing. Previous mathematical modeling efforts have focused on bundles' rigidity and shape.
View Article and Find Full Text PDFActin has been shown to be essential for clathrin-mediated endocytosis in yeast. However, actin polymerization alone is likely insufficient to produce enough force to deform the membrane against the huge turgor pressure of yeast cells. In this paper, we used Brownian dynamics simulations to demonstrate that crosslinking of a meshwork of nonpolymerizing actin filaments is able to produce compressive forces.
View Article and Find Full Text PDFWe formulated a spatially resolved model to estimate forces exerted by a polymerizing actin meshwork on an invagination of the plasma membrane during endocytosis in yeast cells. The model, which approximates the actin meshwork as a visco-active gel exerting forces on a rigid spherocylinder representing the endocytic invagination, is tightly constrained by experimental data. Simulations of the model produce forces that can overcome resistance of turgor pressure in yeast cells.
View Article and Find Full Text PDFIntuition alone often fails to decipher the mechanisms underlying the experimental data in Cell Biology and Biophysics, and mathematical modeling has become a critical tool in these fields. However, mathematical modeling is not as widespread as it could be, because experimentalists and modelers often have difficulties communicating with each other, and are not always on the same page about what a model can or should achieve. Here, we present a framework to develop models that increase the understanding of the mechanisms underlying one's favorite biological system.
View Article and Find Full Text PDFDuring clathrin-mediated endocytosis (CME), a flat patch of membrane is invaginated and pinched off to release a vesicle into the cytoplasm. In yeast CME, over 60 proteins-including a dynamic actin meshwork-self-assemble to deform the plasma membrane. Several models have been proposed for how actin and other molecules produce the forces necessary to overcome the mechanical barriers of membrane tension and turgor pressure, but the precise mechanisms and a full picture of their interplay are still not clear.
View Article and Find Full Text PDFPLoS Comput Biol
May 2018
During clathrin-mediated endocytosis in yeast cells, short actin filaments (< 200nm) and crosslinking protein fimbrin assemble to drive the internalization of the plasma membrane. However, the organization of the actin meshwork during endocytosis remains largely unknown. In addition, only a small fraction of the force necessary to elongate and pinch off vesicles can be accounted for by actin polymerization alone.
View Article and Find Full Text PDFTo internalize nutrients and cell surface receptors via clathrin-mediated endocytosis, cells assemble at least 50 proteins, including clathrin, clathrin-interacting proteins, actin filaments, and actin binding proteins, in a highly ordered and regulated manner. The molecular mechanism by which actin filament polymerization deforms the cell membrane is unknown, largely due to lack of knowledge about the organization of the regulatory proteins and actin filaments. We used high-speed superresolution localization microscopy of live fission yeast cells to improve the spatial resolution to ∼35 nm with 1-s temporal resolution.
View Article and Find Full Text PDFMolecular assemblies can have highly heterogeneous dynamics within the cell, but the limitations of conventional fluorescence microscopy can mask nanometer-scale features. Here we adapt a single-molecule strategy to perform single-molecule recovery after photobleaching (SRAP) within dense macromolecular assemblies to reveal and characterize binding and unbinding dynamics within such assemblies. We applied this method to study the eisosome, a stable assembly of BAR-domain proteins on the cytoplasmic face of the plasma membrane in fungi.
View Article and Find Full Text PDFAntagonistic microorganisms produce antimicrobials to inhibit the growth of competitors. Although water-soluble antimicrobials are limited to proximal interactions via aqueous diffusion, volatile antimicrobials are able to act at a distance and diffuse through heterogeneous environments. Here, we identify the mechanism of action of , an endophytic fungus known for its volatile antimicrobial activity toward a wide range of human and plant pathogens and its potential use in mycofumigation.
View Article and Find Full Text PDFFission yeast is a powerful model organism that has provided insights into important cellular processes thanks to the ease of its genome editing by homologous recombination. However, creation of strains with a large number of targeted mutations or containing plasmids has been challenging because only a very small number of selection markers is available in Schizosaccharomyces pombe. In this paper, we identify two fission yeast fluoride exporter channels (Fex1p and Fex2p) and describe the development of a new strategy using Fex1p as a selection marker for transformants in rich media supplemented with fluoride.
View Article and Find Full Text PDFCytokinesis in fission yeast cells depends on conventional myosin-II (Myo2) to assemble and constrict a contractile ring of actin filaments. Less is known about the functions of an unconventional myosin-II (Myp2) and a myosin-V (Myo51) that are also present in the contractile ring. Myo2 appears in cytokinetic nodes around the equator 10 min before spindle pole body separation (cell-cycle time, -10 min) independent of actin filaments, followed by Myo51 at time zero and Myp2 at time +20 min, both located between nodes and dependent on actin filaments.
View Article and Find Full Text PDFAip1p cooperates with actin-depolymerizing factor (ADF)/cofilin to disassemble actin filaments in vitro and in vivo, and is proposed to cap actin filament barbed ends. We address the synergies between Aip1p and the capping protein heterodimer Acp1p/Acp2p during clathrin-mediated endocytosis in fission yeast. Using quantitative microscopy and new methods we have developed for data alignment and analysis, we show that heterodimeric capping protein can replace Aip1p, but Aip1p cannot replace capping protein in endocytic patches.
View Article and Find Full Text PDF