Superior cervical ganglion neurons (SCGN) are often used to investigate neurotransmitter release mechanisms. In this study, we optimized the dissociation and culture conditions of rat SCGN cultures for dual patch clamp recordings. Two weeks in vitro are sufficient to achieve a significant CNTF-induced cholinergic switch and to develop mature and healthy neuronal profiles suited for detailed patch clamp analysis.
View Article and Find Full Text PDFWe studied the rapid changes in electrical properties of lumbar motoneurons between postnatal days 3 and 9 just before mice weight-bear and walk. The input conductance and rheobase significantly increased up to P8. A negative correlation exists between the input resistance (Rin) and rheobase.
View Article and Find Full Text PDFNeurons have complex electrophysiological properties, however, it is often difficult to determine which properties are the most relevant to neuronal function. By combining current-clamp measurements of electrophysiological properties with multi-variate analysis (hierarchical clustering, principal component analysis), we were able to characterize the postnatal development of substantia nigra dopaminergic neurons' electrical phenotype in an unbiased manner, such that subtle changes in phenotype could be analyzed. We show that the intrinsic electrical phenotype of these neurons follows a non-linear trajectory reaching maturity by postnatal day 14, with two developmental transitions occurring between postnatal days 3-5 and 9-11.
View Article and Find Full Text PDFThere have been considerable interests in attempting to reverse the deficit because of an SCI (spinal cord injury) by restoring neural pathways through the lesion and by rebuilding the tissue network. In order to provide an appropriate micro-environment for regrowing axotomized neurons and proliferating and migrating cells, we have implanted a small block of pHPMA [poly N-(2-hydroxypropyl)-methacrylamide] hydrogel into the hemisected T10 rat spinal cord. Locomotor activity was evaluated once a week during 14 weeks with the BBB rating scale in an open field.
View Article and Find Full Text PDFThe level of expression of ion channels has been demonstrated to vary over a threefold to fourfold range from neuron to neuron, although the expression of distinct channels may be strongly correlated in the same neurons. We demonstrate that variability and covariation also apply to the biophysical properties of ion channels. We show that, in rat substantia nigra pars compacta dopaminergic neurons, the voltage dependences of the A-type (I(A)) and H-type (I(H)) currents exhibit a high degree of cell-to-cell variability, although they are strongly correlated in these cells.
View Article and Find Full Text PDFA critical step in improving our understanding of the development of amyotrophic lateral sclerosis (ALS) is to identify the factors contributing to the alterations in the excitability of motoneurons and assess their individual contributions. Here we investigated the early alterations in the passive electrical and morphological properties of neonatal spinal motoneurons that occur by 10 d after birth, long before disease onset. We identified some of the factors contributing to these alterations, and estimated their individual contributions.
View Article and Find Full Text PDFQuantitative analysis of the dendritic arborizations of wild-type (WT) and superoxide dismutase 1 (SOD1) postnatal mouse motoneurons was performed following intracellular staining and 3D reconstructions with Neurolucida system. The population of lumbar motoneurons was targeted in the caudal part of the L5 segment, and all labeled motoneurons were located within the same ventrolateral pool. Despite the similar size of the soma and the mean diameter of primary dendrites, the dendritic arborizations of the WT and SOD1 motoneurons showed significant differences in terms of their morphometric parameters.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis is a lethal, adult-onset disease characterized by progressive degeneration of motoneurons. Recent data have suggested that the disease could be linked to abnormal development of the motor nervous system. Therefore, we investigated the electrical properties of lumbar motoneurons in an in-vitro neonatal spinal cord preparation isolated from SOD1(G85R) mice, which is a transgenic model of amyotrophic lateral sclerosis.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative and fatal human disorder characterized by progressive loss of motor neurons. Transgenic mouse models of ALS are very useful to study the initial mechanisms underlying this neurodegenerative disease. We will focus here on the earlier abnormalities observed in superoxide dismutase 1 (SOD1) mutant mice.
View Article and Find Full Text PDFMost neurodegenerative diseases become manifest at an adult age but abnormalities or pathological symptoms appear earlier. It is important to identify the initial mechanisms underlying such progressive neurodegenerative disease in both humans and animals. Transgenic mice expressing the familial amyotrophic lateral sclerosis (ALS)-linked mutation (G85R) in the enzyme superoxide dismutase 1 (SOD1) develop motor neuron disease at 8-10 months of age.
View Article and Find Full Text PDF