Early-life stress increases sensitivity to subsequent stress, which has been observed among humans, other animals, at the level of cellular activity, and at the level of gene expression. However, the molecular mechanisms underlying such long-lasting sensitivity are poorly understood. We tested the hypothesis that persistent changes in transcription and transcriptional potential were maintained at the level of the epigenome, through changes in chromatin.
View Article and Find Full Text PDFChronic pain involves both central and peripheral neuronal plasticity that encompasses changes in the brain, spinal cord, and peripheral nociceptors. Within the forebrain, mesocorticolimbic regions associated with emotional regulation have recently been shown to exhibit lasting gene expression changes in models of chronic pain. To better understand how such enduring transcriptional changes might be regulated within brain structures associated with processing of pain or affect, we examined epigenetic modifications involved with active or permissive transcriptional states (histone H3 lysine 4 mono and trimethylation, and histone H3 lysine 27 acetylation) in periaqueductal gray (PAG), lateral hypothalamus (LH), nucleus accumbens (NAc), and ventral tegmental area (VTA) 5 weeks after sciatic nerve injury in mice to model chronic pain.
View Article and Find Full Text PDF