Publications by authors named "Julie Wheway"

Endothelial cells closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of endothelial cell microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, such as atherosclerosis, sepsis, multiple sclerosis, and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction.

View Article and Find Full Text PDF

In patients with cerebral malaria (CM), higher levels of cell-specific microparticles (MP) correlate with the presence of neurological symptoms. MP are submicron plasma membrane-derived vesicles that express antigens of their cell of origin and phosphatidylserine (PS) on their surface, facilitating their role in coagulation, inflammation and cell adhesion. In this study, the in vivo production, fate and pathogenicity of cell-specific MP during Plasmodium berghei infection of mice were evaluated.

View Article and Find Full Text PDF

Sequestration of infected red blood cells (iRBC) within the cerebral and pulmonary microvasculature is a hallmark of human cerebral malaria (hCM). The interaction between iRBC and the endothelium in hCM has been studied extensively and is linked to the severity of malaria. Experimental CM (eCM) caused by Plasmodium berghei ANKA reproduces most features of hCM, although the sequestration of RBC infected by P.

View Article and Find Full Text PDF

We have established a novel in vitro co-culture system of human brain endothelial cells (HBEC), Plasmodium falciparum parasitised red blood cells (iRBC) and peripheral blood mononuclear cells (PBMC), in order to simulate the chief pathophysiological lesion in cerebral malaria (CM). This approach has revealed a previously unsuspected pro-inflammatory role of the endothelial cell through potentiating the production of interferon (IFN)-γ by PBMC and concurrent reduction of interleukin (IL)-10. The IFN-γ increased the expression of CXCL10 and intercellular adhesion molecule (ICAM)-1, both of which have been shown to be crucial in the pathogenesis of CM.

View Article and Find Full Text PDF

Endothelial cells (EC) form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM) and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC) interact with and support the proliferation of T cells.

View Article and Find Full Text PDF

Asthma affects 300 million people worldwide, yet the mechanism behind this pathology has only been partially elucidated. The documented connection between psychological stress and airway inflammation strongly suggests the involvement of the nervous system and its secreted mediators, including neuropeptides, on allergic respiratory disease. In this study, we show that neuropeptide Y (NPY), a prominent neurotransmitter, which release is strongly upregulated during stress, exacerbates allergic airway inflammation (AAI) in mice, via its Y1 receptor.

View Article and Find Full Text PDF

Growing evidence suggests that neuropeptide Y (NPY) plays an important role in the immune system. NPY is produced by the central and peripheral nervous system but also by immune cells in response to activation. NPY has pleiotropic effects on both the innate and adaptive arms of the immune system, with effects ranging from the modulation of cell migration to macrophage, T helper (Th) cell cytokine release, and antibody production.

View Article and Find Full Text PDF

Growing evidence suggests that the neuropeptide Y (NPY) system plays an important role in the immune system. Yet, little is known about the expression of NPY and receptors in the immune system. Moreover, original contradicting results have confused the picture and hampered a clear understanding of its role in the immune system.

View Article and Find Full Text PDF

Psychological conditions, including stress, compromise immune defenses. Although this concept is not novel, the molecular mechanism behind it remains unclear. Neuropeptide Y (NPY) in the central nervous system is a major regulator of numerous physiological functions, including stress.

View Article and Find Full Text PDF

BAFF (B cell-activating factor belonging to the TNF family) is a cell survival and maturation factor for B cells, and overproduction of BAFF is associated with systemic autoimmune disease. BAFF binds to three receptors, BAFF-R, transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), and B cell maturation Ag (BCMA). Using specific mAbs, BAFF-R was found to be the predominant BAFF receptor expressed on peripheral B cells, in both humans and mice, and antagonist mAbs to BAFF-R blocked BAFF-mediated costimulation of anti- micro responses.

View Article and Find Full Text PDF

TNF is well characterized as a mediator of inflammatory responses. TNF also facilitates organization of secondary lymphoid organs, particularly B cell follicles and germinal centers, a hallmark of T-dependent Ab responses. TNF also mediates defense against tumors.

View Article and Find Full Text PDF

BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögren's syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands.

View Article and Find Full Text PDF