Psychiatry Clin Neurosci
October 2023
Aim: Neuroimaging-based machine-learning predictions of psychosis onset rely on the hypothesis that structural brain anomalies may reflect the underlying pathophysiology. Yet, current predictors remain difficult to interpret in light of brain structure. Here, we combined an advanced interpretable supervised algorithm and a model of neuroanatomical age to identify the level of brain maturation of the regions most predictive of psychosis.
View Article and Find Full Text PDFBackground: The cerebellum contains more than 50% of all neurons in the brain and is involved in a broad range of cognitive functions, including social communication and social cognition. Inconsistent atypicalities in the cerebellum have been reported in individuals with autism compared to controls suggesting the limits of categorical case control comparisons. Alternatively, investigating how clinical dimensions are related to neuroanatomical features, in line with the Research Domain Criteria approach, might be more relevant.
View Article and Find Full Text PDFPrediction of chronological age from neuroimaging in the healthy population is an important issue because the deviations from normal brain age may highlight abnormal trajectories towards brain disorders. As a first step, ML models have emerged to predict chronological age from brain MRI, as a proxy measure of biological age. However, there is currently no consensus w.
View Article and Find Full Text PDFIn the prefrontal cortex (PFC), higher-order cognitive functions and adaptive flexible behaviors rely on continuous dynamical sequences of spiking activity that constitute neural trajectories in the state space of activity. Neural trajectories subserve diverse representations, from explicit mappings in physical spaces to generalized mappings in the task space, and up to complex abstract transformations such as working memory, decision-making and behavioral planning. Computational models have separately assessed learning and replay of neural trajectories, often using unrealistic learning rules or decoupling simulations for learning from replay.
View Article and Find Full Text PDF