Brain-computer interface (BCI) is a term used to describe systems that translate biological information into commands that can control external devices such as computers, prosthetics, and other machinery. While BCI is used in military applications, home control systems, and a wide array of entertainment, much of its modern interest and funding can be attributed to its utility in the medical community, where it has rapidly propelled advancements in the restoration or replacement of critical functions robbed from victims of disease, stroke, and traumatic injury. BCI devices can allow patients to move prosthetic limbs, operate devices such as wheelchairs or computers, and communicate through writing and speech-generating devices.
View Article and Find Full Text PDFBackground Context: During spine surgery, motor evoked potentials (MEPs) are often utilized to monitor both spinal cord function and spinal nerve root or plexus function. While there are reports evaluating the impact of anesthesia on the ability of MEPs to monitor spinal cord function, less is known about the impact of anesthesia on the ability of MEPs to monitor spinal nerve root and plexus function.
Purpose: To compare the baseline monitorability and amplitude of MEPs during cervical and lumbar procedures between two cohorts based on the maintenance anesthetic regimen: a total intravenous anesthesia (TIVA) versus a regimen balanced with volatile inhalational and intravenous agents.
MEPs are recommended for patients undergoing lumbar and lumbosacral procedures in which intraoperative neuromonitoring (IONM) is being utilized. While electromyography (EMG) provides critical nerve root proximity information, spontaneous EMG discharges are relatively poor at reliably diagnosing spinal nerve root dysfunction. In contrast, research indicates that MEPs are both sensitive and specific in diagnosing evolving spinal nerve root dysfunction.
View Article and Find Full Text PDF