Immune checkpoint (ICP) blockade has shown limited effectiveness in glioblastoma (GBM), particularly in the mesenchymal subtype, where interactions between immune cells and glioblastoma cancer stem cells (GSCs) drive immunosuppression and therapy resistance. Tailoring ICPs specific to GSCs can enhance the antitumor immune response. This study proposes the use of lipid nanoparticles (LNPs) encapsulating CRISPR RNAs as an in vivo screening tool for ICPs in a syngeneic model of mesenchymal GSCs.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) presents a substantial challenge due to its complex nature, limited effective treatment options, and modest benefits from current therapies in slowing disease progression. This study explores the potential of intranasal (IN) delivery to enhance the CNS delivery of riluzole (RLZ), a standard ALS treatment which is subject to blood-brain barrier efflux mechanisms. Additionally, the impact of elacridar (ELC), an efflux pump inhibitor, on IN RLZ CNS bioavailability was examined.
View Article and Find Full Text PDFIn vitro and ex-vivo target identification strategies often fail to predict in vivo efficacy, particularly for glioblastoma (GBM), a highly heterogenous tumor rich in resistant cancer stem cells (GSCs). An in vivo screening tool can improve prediction of therapeutic efficacy by considering the complex tumor microenvironment and the dynamic plasticity of GSCs driving therapy resistance and recurrence. This study proposes lipid nanoparticles (LNPs) as an efficient in vivo CRISPR-Cas9 gene editing tool for target validation in mesenchymal GSCs.
View Article and Find Full Text PDFTwo-dimension graphene oxide (GO) nanosheets with high and low serum protein binding profiles (high/low hard-bound protein corona/HC) are used in this study as model materials and screening tools to investigate the underlying roles of the protein corona on nanomaterial toxicities . We proposed that the biocompatibility/nanotoxicity of GO is protein corona-dependent and host immunity-dependent. The hypothesis was tested by injecting HC GO nanosheets in immunocompetent ICR/CD1 and immunodeficient NOD- mice and performed histopathological and hematological evaluation studies on days 1 and 14 post-injection.
View Article and Find Full Text PDFExtracellular vesicles (EVs) derived from mesenchymal stem cells are promising nanotherapeutics in liver diseases due to their regenerative and immunomodulatory properties. Nevertheless, a concern has been raised regarding the rapid clearance of exogenous EVs by phagocytic cells. Here we explore the impact of protein corona on EVs derived from two culturing conditions in which specific proteins acquired from media were simultaneously adsorbed on the EV surface.
View Article and Find Full Text PDFTherapeutic nucleic acids (TNAs) comprise an alternative to conventional drugs for cancer therapy. Recently, stable nucleic acid lipid particles (SNALPs) have been explored to deliver TNA efficiently and safely both in vitro and in vivo. Small interfering RNA (siRNA) and messenger RNA (mRNA) based drugs have been suggested for a wide range of pathologies, and their respective lipid nanoparticle (LNP) formulations have been optimised using a Design of Experiments (DoE) approach.
View Article and Find Full Text PDFIntranasal administration is becoming increasingly more attractive as a fast delivery route to the brain for therapeutics circumventing the blood-brain barrier (BBB). Gold nanorods (AuNRs) demonstrate unique optical and biological properties compared to other gold nanostructures due to their high aspect ratio. In this study, we investigated for the first time the brain region-specific distribution of AuNRs and their potential as a drug delivery platform for central nervous system (CNS) therapy following intranasal administration to mice using a battery of analytical and imaging techniques.
View Article and Find Full Text PDFIn situ vaccination with immunostimulatory compounds is a demonstrated means to treat tumors preclinically. While these therapeutic effects have been attributed to the actions of T cells or innate immune activation, characterisation of the humoral immune response is seldom performed. This study aims to identify whether the injection of immunoadjuvants, Addavax (Adda) and cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG), intratumorally can influence the antibody response.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2022
Tumour-targeted near-infrared (NIR) optical imaging is an emerging tool for the detection of malignant tissues. This modality can be useful in both diagnosis and intraoperative visualisation, to help defining tumour margins and allow a more precise removal of all the cancerous mass during surgery. In this context, we have developed a series of NIR fluorescent probes that target the prostate-specific membrane antigen (PSMA), an established biomarker overexpressed in prostate cancer.
View Article and Find Full Text PDFFunctionalized multi-walled carbon nanotubes (MWCNTs) containing radioactive salts are proposed as a potential system for radioactivity delivery. MWCNTs are loaded with isotopically enriched 152-samarium chloride (SmCl), the ends of the MWCNTs are sealed by high temperature treatment, and the encapsulated Sm is neutron activated to radioactive Sm. The external walls of the radioactive nanocapsules are functionalized through arylation reaction, to introduce hydrophilic chains and increase the water dispersibility of CNTs.
View Article and Find Full Text PDFTumor immunogenic cell death (ICD), induced by certain chemotherapeutic drugs such as doxorubicin (Dox), is a form of apoptosis potentiating a protective immune response. One of the hallmarks of ICD is the translocation of calreticulin to the cell surface acting as an 'eat me' signal. This manuscript describes the development of a stable nucleic acid-lipid particles (SNALPs) formulation for the simultaneous delivery of ICD inducing drug (Dox) with small interfering RNA (siRNA) knocking down CD47 (siCD47), the dominant 'don't eat me' marker, for synergistic enhancement of ICD.
View Article and Find Full Text PDFBlack porous silicon nanoparticles (BPSi NPs) are known as highly efficient infrared light absorbers that are well-suitable for photothermal therapy (PTT) and photoacoustic imaging (PAI). PTT and PAI require a sufficient number of effectively light-absorbing NPs to be accumulated in tumor after intravenous administration. Herein, biodistribution of PEGylated BPSi NPs with different sizes (i.
View Article and Find Full Text PDFThis paper reports the use of a self-assembling hydrogel as a delivery vehicle for the Parkinson's disease drug l-DOPA. Based on a two-component combination of an l-glutamine amide derivative and benzaldehyde, this gel has very soft rheological properties and self-healing characteristics. It is demonstrated that the gel can be formulated to encapsulate l-DOPA.
View Article and Find Full Text PDFThis study investigated the feasibility of lipid polymer hybrid nanoparticles (LPH) as a platform for the combinatorial delivery of small interfering RNA (siRNA) and etoposide (Eto). Different Eto loaded LPH formulations (LPH ) are prepared. The optimized cationic LPH with a particle size of 109.
View Article and Find Full Text PDFThree-dimensional (3D) cell cultures and organs-on-a-chip have been developed to construct microenvironments that resemble the environment within the human body and to provide a platform that enables clear observation and accurate assessments of cell behavior. However, direct observation of transendothelial electrical resistance (TEER) has been challenging. To improve the efficiency in monitoring the cell development in organs-on-a-chip, in this study, we designed and integrated commercially available TEER measurement electrodes into an in vitro blood-brain barrier (BBB)-on-chip system to quantify TEER variation.
View Article and Find Full Text PDFPoly(lactic-co-glycolic acid) (PLGA) is the most commonly described biocompatible copolymer used in biomedical applications. In this work, a green synthetic approach based on the biocompatible zinc proline complex, as an initiator for PLGA synthesis, is reported for the first time for the synthesis of methoxy-poly(ethylene glycol)-block-poly(l-lactic-co-glycolic acid) (mPEG-PLGA). mPEG-PLGA with controlled molecular weight and narrow polydispersity was synthesised.
View Article and Find Full Text PDFIon-pairing a lifesaving drug such as theophylline with a targeting moiety could have a significant impact on medical emergencies such as status asthmaticus or COVID-19 induced pneumomediastinum. However, to achieve rapid drug targeting in vivo the ion-pair must be protected against breakdown before the entry into the target tissue. This study aims to investigate if inserting theophylline, when ion-paired to the polyamine transporter substrate spermine, into a cyclodextrin (CD), to form a triplex, could direct the bronchodilator to the lungs selectively after intravenous administration.
View Article and Find Full Text PDFExosomes (Exo)-based therapy holds promise for treatment of lethal pancreatic cancer (PC). Limited understanding of key factors affecting Exo uptake in PC cells restricts better design of Exo-based therapy. This work aims to study the uptake properties of different Exo by PC cells.
View Article and Find Full Text PDFIn this study, enteric coatings based exclusively on naturally occurring ingredients were reported. Alginate (Alg) and pectin (Pec) blends with or without naturally occurring glyceride, glycerol monostearate (GMS), were initially used to produce solvent-casted films. Incorporating GMS in the natural polymeric films significantly enhanced the acid-resistance properties in gastric medium.
View Article and Find Full Text PDFApoptotic cells and cell fragments, especially those produced as a result of immunogenic cell death (ICD), are known to be a potential source of cancer vaccine immunogen. However, due to variation between tumours and between individuals, methods to generate such preparations may require extensive ex vivo personalisation. To address this, we have utilised the concept of in situ vaccination whereby an ICD inducing drug is injected locally to generate immunogenic apoptotic fragments/cells.
View Article and Find Full Text PDFIn this work we describe the formulation and characterisation of red-emitting polymeric nanocapsules (NCs) incorporating superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic tumour targeting. The self-fluorescent oligomers were synthesised and chemically conjugated to PLGA which was confirmed by NMR spectroscopy, FT-IR spectroscopy and mass spectrometry. Hydrophobic SPIONs were synthesised through thermal decomposition and their magnetic and heating properties were assessed by SQUID magnetometry and calorimetric measurements, respectively.
View Article and Find Full Text PDFAsenapine maleate (ASPM) is an antipsychotic drug prescribed for the treatment of schizophrenia and bipolar disorder. ASPM possesses low oral bioavailability due to extensive hepatic metabolism. Therefore, RGD peptide conjugated liposomes loaded with ASPM were prepared to target Peyer's patches in the intestine which in-turn get access into intestinal lymphatic system thereby increasing the oral bioavailability of the drug.
View Article and Find Full Text PDFVγ9Vδ2 T cell immunotherapy has been shown to be effective in delaying tumour growth in both pre-clinical and clinical studies. It has been pointed out the importance of the ability of cells to accumulate within tumours and the association with therapeutic efficacy in clinical studies of adoptive T cell transfer. We have previously reported that alendronate liposomes (L-ALD) increase the efficacy of this therapy after localised or systemic injection of γδ T cells in mice, inoculated with ovarian, melanoma, pancreatic or experimental lung metastasis tumour models, respectively.
View Article and Find Full Text PDF