DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age.
View Article and Find Full Text PDFTreating pregnancy-related disorders is exceptionally challenging because the threat of maternal and/or fetal toxicity discourages the use of existing medications and hinders new drug development. One potential solution is the use of lipid nanoparticle (LNP) RNA therapies, given their proven efficacy, tolerability, and lack of fetal accumulation. Here, we describe LNPs for efficacious mRNA delivery to maternal organs in pregnant mice via several routes of administration.
View Article and Find Full Text PDFPregnant people are unable to take many prescription and over-the-counter medications because of suspected or known risk to the fetus. This undermedication contributes to the high maternal mortality rate in the United States and detracts from the quality of life of pregnant people. As such, there is an urgent need to develop safe pharmaceutical formulations for use during pregnancy.
View Article and Find Full Text PDFDNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age.
View Article and Find Full Text PDFLow-profile and transient ingestible electronic capsules for diagnostics and therapeutics can replace widely used yet invasive procedures such as endoscopies. Several gastrointestinal diseases such as reflux disease, Crohn's disease, irritable bowel syndrome, and eosinophilic esophagitis result in increased intercellular dilation in epithelial barriers. Currently, the primary method of diagnosing and monitoring epithelial barrier integrity is via endoscopic tissue biopsies followed by histological imaging.
View Article and Find Full Text PDFFlat cultures of mammalian cells are a widely used in vitro approach for understanding cell physiology, but this system is limited in modeling solid tissues due to unnaturally rapid cell replication. This is particularly challenging when modeling mature chromatin, as fast replicating cells are frequently involved in DNA replication and have a heterogeneous polyploid population. Presented below is a workflow for modeling, treating, and analyzing quiescent chromatin modifications using a three-dimensional (3D) cell culture system.
View Article and Find Full Text PDFOphthalmic Surg Lasers Imaging Retina
July 2021
Background And Objective: To evaluate the impact of systemic immunosuppressive therapy on the rates and outcomes of endophthalmitis following intravitreal anti-vascular endothelial growth factor (VEGF) injections.
Patients And Methods: A retrospective, single-center, comparative cohort study examining eyes undergoing intravitreal anti-VEGF injections from January 2016 to September 2019. Cohorts were created based on concurrent immunosuppressive therapy at time of injection.