Background: Defective lung development resulting in lung hypoplasia and an attenuated and hypermuscularized pulmonary vasculature contributes to significant postnatal mortality in congenital diaphragmatic hernia (CDH). We hypothesize that deficient embryonic pulmonary blood flow contributes to defective lung development in CDH, which may therefore be ameliorated via enhancement of embryonic pulmonary blood flow.
Methods: The mouse nitrofen model of CDH was utilized to measure embryonic pulmonary blood flow by in utero intracardiac injection of FITC-labeled tomato lectin and color-flow Doppler ultrasound.
The etiology of pulmonary vascular abnormalities in CDH is incompletely understood. Studies have demonstrated improvement in pulmonary vasculature with prenatal therapy in animal models. We hypothesize that prenatal sildenafil may attenuate defective pulmonary vascular development via modulation of vSMC phenotype from undifferentiated, proliferative phenotype to differentiated, contractile phenotype.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
July 2015
Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH.
View Article and Find Full Text PDFHypoxia promotes angiogenesis, proliferation, invasion, and metastasis of pancreatic cancer. Essentially, all studies of the hypoxia pathway in pancreatic cancer research to date have focused on fully malignant tumors or cancer cell lines, but the potential role of hypoxia inducible factors (HIF) in the progression of premalignant lesions has not been critically examined. Here, we show that HIF2α is expressed early in pancreatic lesions both in human and in a mouse model of pancreatic cancer.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
December 2012
Despite recent technical advances for studying lineage tracing and gene functions, our knowledge of pancreatic duct progenitor cells and mechanisms involved in their differentiation remains a huge void in our understanding of pancreatic development. A deeper insight into ductal differentiation is needed because ductal cells may harbor pancreatic stem/progenitor cells that could give rise to new islets. Also, since the most common pancreatic tumors form structures expressing ductal cell-specific markers, studies of ductal development may provide better markers for pancreatic tumor classification.
View Article and Find Full Text PDF